Understanding somatic mutations and structural variations in domestic pigs (Sus scrofa domestica) is critical due to their increasing importance as model organisms in biomedical research. In this study, we conducted a comprehensive analysis through whole-genome sequencing of skin, organs, and blood samples. By examining two pig pedigrees, we investigated the inheritance and sharedness of structural variants among fathers, mothers, and offsprings.
View Article and Find Full Text PDFBackground: In humans, after fertilization, the zygote divides into two 2n diploid daughter blastomeres. During this division, DNA is replicated, and the remaining mutually exclusive genetic mutations in the genome of each cell are called post-zygotic variants. Using these somatic mutations, developmental lineages can be reconstructed.
View Article and Find Full Text PDFBackground: Hair follicles are among a handful of organs that exhibit immune privilege. Dysfunction of the hair follicle immune system underlies the development of inflammatory diseases, such as alopecia areata.
Methods: Quantitative reverse transcription PCR and immunostaining was used to confirm the expression of major histocompatibility complex class I in human dermal papilla cells.
Cellular dynamics and fate decision in early human embryogenesis remain largely unknown owing to the challenges of performing studies in human embryos. Here, we explored whole-genomes of 334 single-cell colonies and targeted deep sequences of 379 bulk tissues obtained from various anatomical locations of seven recently deceased adult human donors. Using somatic mutations as an intrinsic barcode, we reconstructed early cellular phylogenies that demonstrate (1) an endogenous mutational rate that is higher in the first cell division but decreases to approximately one per cell per cell division later in life; (2) universal unequal contribution of early cells to embryo proper, resulting from early cellular bottlenecks that stochastically set aside epiblast cells within the embryo; (3) examples of varying degrees of early clonal imbalances between tissues on the left and right sides of the body, different germ layers and specific anatomical parts and organs; (4) emergence of a few ancestral cells that will substantially contribute to adult cell pools in blood and liver; and (5) presence of mitochondrial DNA heteroplasmy in the fertilized egg.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are membrane-derived vesicles that mediate intercellular communications. Neutrophils produce different subtypes of EVs during inflammatory responses. Neutrophil-derived trails (NDTRs) are generated by neutrophils migrating toward inflammatory foci, whereas neutrophil-derived microvesicles (NDMVs) are thought to be generated by neutrophils that have arrived at the inflammatory foci.
View Article and Find Full Text PDFThe control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics.
View Article and Find Full Text PDF