Publications by authors named "Nanda H"

Article Synopsis
  • The study examined SARS-CoV-2 immunity in Cameroon from August 2021 to September 2022, assessing changes in antibody levels, mortality rates, and vaccination.
  • Seroprevalence surged from 11.2% to nearly 60% while COVID-19-related deaths dropped dramatically, indicating improved immunity without a corresponding rise in vaccinations.
  • The findings suggest that high vaccination rates may not be necessary for controlling outbreaks in Africa, urging policymakers to consider local research for better epidemic management strategies.
View Article and Find Full Text PDF

Over eight million surgical procedures are conducted annually in the United Stats to address organ failure or tissue losses. In response to this pressing need, recent medical advancements have significantly improved patient outcomes, primarily through innovative reconstructive surgeries utilizing tissue grafting techniques. Despite tremendous efforts, repairing damaged tissues remains a major clinical challenge for bioengineers and clinicians.

View Article and Find Full Text PDF

Background: Little is known about attitudes towards COVID-19 vaccination in sub-Saharan Africa, where immunisation coverage is the lowest in the world.

Aim: The study aimed to identify factors associated with COVID-19 vaccine hesitancy and uptake in Cameroon, and assess changes in these factors over a period of time.

Setting: The study was conducted in the ten regions of Cameroon.

View Article and Find Full Text PDF
Article Synopsis
  • Musculoskeletal disorders are increasing, and while alternatives exist, orthopedic treatments still largely depend on biometal implants due to their strength and compatibility with the body.
  • Traditional metallic implants face issues like poor interaction with cells, leading to failure from mechanical mismatches and bacterial infections.
  • Recent advancements focus on surface engineering to improve cell-material interactions, with promising developments in smart coatings that can heal themselves or release drugs to reduce infections, highlighting the potential for enhanced implant longevity and effectiveness.
View Article and Find Full Text PDF

Aging is a complex, multifactorial, and inevitable process, which begins before birth and continues throughout the life. Multimorbidity prevailing among the geriatric population is an important health challenge for most of the developing countries. To examine the effect of gender and increasing age on the survival of the geriatric population suffering from multimorbidity.

View Article and Find Full Text PDF
Article Synopsis
  • Reliable impurity detection in biopharmaceuticals is key for ensuring product quality and safety; however, traditional methods face technical challenges in accurately identifying individual impurities.
  • This study introduces a size-based electrophoresis method combined with mass spectrometry to effectively detect and identify impurities in antibody production from known degradation products.
  • By simulating cell culture conditions and forced degradation, the researchers demonstrate that this combined approach improves the detection and identification of impurities, enhancing the development process for antibody therapeutics.*
View Article and Find Full Text PDF

An increasing number of novel biomaterials have been applied in wound healing therapy. Creating beneficial environments and containing various bioactive molecules, hydrogel- and extracellular vesicle (EV)-based therapies have respectively emerged as effective approaches for wound healing. Moreover, the synergistic combination of these two components demonstrates more favorable outcomes in both chronic and acute wound healing.

View Article and Find Full Text PDF

Ti6Al4V superalloy is recognized as a good candidate for bone implants owing to its biocompatibility, corrosion resistance, and high strength-to-weight ratio. While dense metal implants are associated with stress shielding issues due to the difference in densities, stiffness, and modulus of elasticity compared to bone tissues, the surface of the implant/scaffold should mimic the properties of the bone of interest to assure a good integration with a strong interface. In this study, we investigated the additive manufacturing of porous Ti6Al4V scaffolds and coating modification for enhanced osteoconduction using osteoblast cells.

View Article and Find Full Text PDF

The development of sensitive and specific exosome detection tools is essential because they are believed to provide specific information that is important for early detection, screening, diagnosis, and monitoring of cancer. Among the many detection tools, surface-plasmon resonance (SPR) biosensors are analytical devices that offer advantages in sensitivity and detection speed, thereby making the sample-analysis process faster and more accurate. In addition, the penetration depth of the SPR biosensor, which is <300 nm, is comparable to the size of the exosome, making the SPR biosensor ideal for use in exosome research.

View Article and Find Full Text PDF

Scaffolds for bone tissue engineering require considerable mechanical strength to repair damaged bone defects. In this study, we designed and developed mechanically competent composite shape memory triphasic bone scaffolds using fused filament fabrication (FFF) three dimensional (3D) printing. Wollastonite particles (WP) were incorporated into the poly lactic acid (PLA)/polycaprolactone (PCL) matrix as a reinforcing agent (up to 40 wt%) to harness osteoconductive and load-bearing properties from the 3D printed scaffolds.

View Article and Find Full Text PDF

Exosomes are small extracellular vesicles secreted by cells, ranging in size from 30 to 150 nm. They contain proteins, nucleic acids, lipids, and other bioactive molecules, which play a crucial role in intercellular communication and material transfer. In tumor immunity, exosomes present various functions while the following two are of great importance: regulating the immune response and serving as delivery carriers.

View Article and Find Full Text PDF

Multispecific antibody constructs are quickly becoming more common constructs in biopharmaceuticals to improve specificity and efficacy. While the advent of this technology has led to improved therapeutics, its development has challenged the analytical tools through which these therapeutics are characterized. Moreover, new critical quality attributes, such as aggregation, have challenged the approaches to characterization even further.

View Article and Find Full Text PDF

Protein therapeutics are susceptible to clipping via enzymatic and nonenzymatic mechanisms that create neo-N-termini. Typically, neo-N-termini are identified by chemical derivatization of the N-terminal amine with (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) followed by proteolysis and mass spectrometric analysis. Detection of the TMPP-labeled peptide is achieved by mapping the peptide sequence to the product ion spectrum derived from collisional activation.

View Article and Find Full Text PDF

The BRAIN Foundation (Pleasanton, CA) hosted Synchrony 2022, a medical conference focusing on research for treatments to benefit individuals with neurodevelopmental disorders (NDD), including those with autism spectrum disorders (ASD) [...

View Article and Find Full Text PDF

Engineered human tissues created by three-dimensional cell culture of human cells in a hydrogel are becoming emerging model systems for cancer drug discovery and regenerative medicine. Complex functional engineered tissues can also assist in the regeneration, repair, or replacement of human tissues. However, one of the main hurdles for tissue engineering, three-dimensional cell culture, and regenerative medicine is the capability of delivering nutrients and oxygen to cells through the vasculatures.

View Article and Find Full Text PDF

The BRAIN Foundation (Pleasanton, CA, USA) hosted a medicine conference, Synchrony 2022, for research into treatments to benefit individuals with neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) [...

View Article and Find Full Text PDF

Here we describe a state-of-the-art, integrated, multi-instrument automated system designed to execute methods involved in mass spectrometry characterization of biotherapeutics. The system includes liquid and microplate handling robotics and utilities, integrated LC-MS, along with data analysis software, to perform sample purification, preparation, and analysis as a seamless integrated unit. The automated process begins with tip-based purification of target proteins from expression cell-line supernatants, which is initiated once the samples are loaded onto the automated system and the metadata are retrieved from our corporate data aggregation system.

View Article and Find Full Text PDF

Single-chain fragment variable (scFv) domains play an important role in antibody-based therapeutic modalities, such as bispecifics, multispecifics and chimeric antigen receptor T cells or natural killer cells. However, scFv domains exhibit lower stability and increased risk of aggregation due to transient dissociation ("breathing") and inter-molecular reassociation of the two domains (VL and VH). We designed a novel strategy, referred to as stapling, that introduces two disulfide bonds between the scFv linker and the two variable domains to minimize scFv breathing.

View Article and Find Full Text PDF

The BRAIN Foundation (Pleasanton, CA, USA) hosted Synchrony 2022, a translational medicine conference focused on research into treatments for individuals with neurodevelopmental disorders (NDD), including those with autism spectrum disorders (ASD) [...

View Article and Find Full Text PDF

A unique translational medicine conference for research into treatments that can benefit individuals with neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), has been developed and hosted by The BRAIN Foundation (Pleasanton, CA, USA) since 2019 [...

View Article and Find Full Text PDF

Musculoskeletal injuries including bone defects continue to present a significant challenge in orthopedic surgery due to suboptimal healing. Bone reconstruction strategies focused on the use of biological grafts and bone graft substitutes in the form of biomaterials-based 3D structures in fracture repair. Recent advances in biomaterials science and engineering have resulted in the creation of intricate 3D bone-mimicking structures that are mechanically stable, biodegradable, and bioactive to support bone regeneration.

View Article and Find Full Text PDF

Scaffold is one of the key components for tissue engineering application. Three-dimensional (3D) printing has given a new avenue to the scaffolds design to closely mimic the real tissue. However, material selection has always been a challenge in adopting 3D printing for scaffolds fabrication, especially for hard tissue.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is a lethal and metastatic malignancy resistant to therapy. Elucidating how pancreatic tumor-specific T cells differentiate and are maintained in vivo could inform novel therapeutic avenues to promote T cell antitumor activity. Here, we show that the spleen is a critical site harboring tumor-specific CD8 T cells that functionally segregate based on differential Cxcr3 and Klrg1 expression.

View Article and Find Full Text PDF

Crop yield varies considerably within agroecology depending on the genetic potential of crop cultivars and various edaphic and climatic variables. Understanding site-specific changes in crop yield and genotype × environment interaction are crucial and needs exceptional consideration in strategic breeding programs. Further, genotypic response to diverse agro-ecologies offers identification of strategic locations for evaluating traits of interest to strengthen and accelerate the national variety release program.

View Article and Find Full Text PDF

The rational design and selection of formulation composition to meet molecule-specific and product-specific needs are critical for biotherapeutics development to ensure physical and chemical stability. This work, based on three antibody-based (mAb) proteins (mAbA, mAbB, and mAbC), evaluates residue-specific impact of EDTA and methionine on protein oxidation, using an integrated biotherapeutics drug product development workflow. This workflow includes statistical experimental design, high-throughput experimental automation and execution, structure-based in silico modeling, inferential statistical analysis, and enhanced interactive data visualization of large datasets.

View Article and Find Full Text PDF