Microbial biofilms and microbiologically influenced corrosion (MIC) pose serious problems in pipelines transporting freshwater from the reservoir to service water systems and fire water systems of power reactors. The present work aims to design a silane-based epoxy-biocide hybrid coating along with antibacterial compounds on carbon steels (CS) for controlling the MIC of pipeline materials. The optimal inhibitory concentrations of biocides are identified and a robust protocol has been developed to prepare epoxy-based coatings impregnated with three biocides (25 ppm each of benzalkonium chloride, bronopol, and isothiazoline).
View Article and Find Full Text PDFUnlabelled: In this work, we study the microbiologically influenced corrosion (MIC) of AISI 316L (1-2% Mn) and AISI 202 (8-12% Mn) in the presence of manganese-oxidizing biofilms. Microbiological and 16S rRNA amplicon sequencing analysis on biofilms formed on the surfaces of both the SS materials after exposure to seawater for two months showed the presence of predominant Mn-oxidizing bacteria (MnOB) groups. The Mn contents in the biofilms formed on AISI 202 and 316L were 0.
View Article and Find Full Text PDF