CAR-T therapies have shown remarkable efficacy against hematological malignancies in the clinic over the last decade and new studies indicate that progress is being made to use these novel therapies to target solid tumors as well as treat autoimmune disease. Innovation in the field, including TCR-T, allogeneic or "off the shelf" CAR-T, and autoantigen/armored CAR-Ts are likely to increase the efficacy and applications of these therapies. The unique aspects of these cell-based therapeutics; patient-derived cells, intracellular expression, in vivo expansion, and phenotypic changes provide unique bioanalytical challenges to develop pharmacokinetic and immunogenicity assessments.
View Article and Find Full Text PDFPre-existing adeno-associated viruses (AAV) neutralizing antibodies (NAb) can prevent AAV vectors from transducing target tissues. The immune responses can include binding/total antibodies (TAb) and neutralizing antibodies (NAb). This study is aimed at comparing total antibody assay (TAb) and cell-based NAb assay against AAV8 to help inform the best assay format for patient exclusion criteria.
View Article and Find Full Text PDFUnusual nucleic acid structures play vital roles as intermediates in many cellular processes and, in the case of peptide nucleic acid (PNA)-mediated triplexes, are leveraged as tools for therapeutic gene editing. However, due to their transient nature, an understanding of the factors that interact with and process dynamic nucleic acid structures remains limited. Here, we developed snapELISA (structure-specific nucleic acid-binding protein ELISA), a rapid high-throughput platform to interrogate and compare up to 2688 parallel nucleic acid structure-protein interactions in vitro.
View Article and Find Full Text PDFCrigler-Najjar syndrome type 1 (CN1) is an autosomal recessive disease caused by a marked decrease in uridine-diphosphate-glucuronosyltransferase (UGT1A1) enzyme activity. Delivery of hUGT1A1-modRNA (a modified messenger RNA encoding for UGT1A1) as a lipid nanoparticle is anticipated to restore hepatic expression of UGT1A1, allowing normal glucuronidation and clearance of bilirubin in patients. To support translation from preclinical to clinical studies, and first-in-human studies, a quantitative systems pharmacology (QSP) model was developed.
View Article and Find Full Text PDFGene and nucleic acid therapies have demonstrated patient benefits to address unmet medical needs. Beside considerations regarding the biological nature of the gene therapy, the quality of bioanalytical methods plays an important role in ensuring the success of these novel therapies. Inconsistent approaches among bioanalytical labs during preclinical and clinical phases have been observed.
View Article and Find Full Text PDF