Publications by authors named "Nancy Washton"

Metal carbonates, which are ubiquitous in the near-surface mineral record, are a major product of biomineralizing organisms and serve as important targets for capturing anthropogenic CO emissions. However, pathways of carbonate mineralization typically diverge from classical predictions due to the involvement of disordered precursors, such as the dense liquid phase (DLP), yet little is known about DLP formation or solidification processes. Using in situ methods we report that a highly hydrated bicarbonate DLP forms via liquid-liquid phase separation and transforms into hollow hydrated amorphous CaCO particles.

View Article and Find Full Text PDF

We report a new sodium fast-ion conductor, Na B S , that exhibits a high Na ion total conductivity of 0.80 mS cm (sintered pellet; cold-pressed pellet=0.21 mS cm ).

View Article and Find Full Text PDF

Low-temperature standard NH-SCR over copper-exchanged zeolite catalysts occurs on NH-solvated Cu-ion active sites in a quasi-homogeneous manner. As key kinetically relevant reaction steps, the reaction intermediate Cu(NH) ion hydrolyzes to Cu(OH)(NH) ion to gain redox activity. The Cu(OH)(NH) ion also transfers between neighboring zeolite cages to form highly reactive reaction intermediates.

View Article and Find Full Text PDF

Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal-organic frameworks, pre-organized multi-ion "secondary building units" (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge.

View Article and Find Full Text PDF

We have screened an array of 23 metals deposited onto the metal-organic framework (MOF) NU-1000 for propyne dimerization to hexadienes. By a first-of-its-kind study utilizing data-driven algorithms and high-throughput experimentation (HTE) in MOF catalysis, yields on Cu-deposited NU-1000 were improved from 0.4 to 24.

View Article and Find Full Text PDF

To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic CeV-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15.

View Article and Find Full Text PDF

A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH-SCR), via a combination of SCR kinetics and electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.

View Article and Find Full Text PDF

The Overhauser effect is unique among DNP mechanisms in that it requires the modulation of the electron-nuclear hyperfine interactions. While it dominates DNP in liquids and metals, where unpaired electrons are highly mobile, Overhauser DNP is possible in insulating solids if rapid structural modulations are linked to a modulation in hyperfine coupling. Herein, we report that Overhauser DNP can be triggered by the strategic addition of a methyl group, demonstrated here in a Blatter's radical.

View Article and Find Full Text PDF

The diffusion behavior of Mg in electrolytes is not as readily accessible as that from Li or Na utilizing PFG NMR, due to the low sensitivity, poor resolution, and rapid relaxation encountered when attempting Mg NMR. In MgTFSI/DME solutions, "bound" DME (coordinating to Mg) and "free" DME (bulk) are distinguishable from H NMR. With the exchange rates between them obtained from 2D H EXSY NMR, we can extract the self-diffusivities of free DME and bound DME (which are equal to that of Mg) before the exchange occurs using PFG diffusion NMR measurements coupled with analytical formulas describing diffusion under two-site exchange.

View Article and Find Full Text PDF
Article Synopsis
  • * The study used isotopically enriched fungal cells and advanced data analysis techniques to discover that chitin's structure is highly varied among different fungal species, showing unique characteristics and resilience to external changes.
  • * Additionally, the research found that chitosan, a deacetylated form of chitin, has a specific helical structure, providing valuable insights into the organization of these carbohydrates within cells and potential implications for studying other complex polymers.
View Article and Find Full Text PDF

High-temperature treatment of γ-Al O can lead to a series of polymorphic transformations, including the formation of δ-Al O and θ-Al O . Quantification of the microstructure in the range where δ- and θ-Al O are formed represents a formidable challenge, as both phases accommodate a high degree of structural disorder. In this work, we explore the use of an XRD recursive-stacking formalism for the quantification of high-temperature transition aluminas.

View Article and Find Full Text PDF

Metal-Organic Frameworks (MOFs) that catalyze hydrogenolysis reactions are rare and there is little understanding of how the MOF, hydrogen, and substrate molecules interact. In this regard, the isoreticular IRMOF-74 series, two of which are known catalysts for hydrogenolysis of aromatic C-O bonds, provides an unusual opportunity for systematic probing of these reactions. The diameter of the 1D open channels can be varied within a common topology owing to the common secondary building unit (SBU) and controllable length of the hydroxy-carboxylate struts.

View Article and Find Full Text PDF

It is generally believed that exchange of secondary metabolite biosynthetic gene clusters (BGCs) among closely related bacteria is an important driver of BGC evolution and diversification. Applying this idea may help researchers efficiently connect many BGCs to their products and characterize the products' roles in various environments. However, existing genetic tools support only a small fraction of these efforts.

View Article and Find Full Text PDF

The reductive cleavage of aryl ether linkages is a key step in the disassembly of lignin to its monolignol components, where selectivity is determined by the kinetics of multiple parallel and consecutive liquid-phase reactions. Triphasic hydrogenolysis of C-labeled benzyl phenyl ether (BPE, a model compound for the major β-O-4 linkage in lignin), catalyzed by Ni/γ-AlO, was observed directly at elevated temperatures (150-175 °C) and pressures (79-89 bar) using magic-angle spinning NMR spectroscopy. Liquid-vapor partitioning in the NMR rotor was quantified using the C NMR resonances for the 2-propanol solvent, whose chemical shifts report on the internal reactor temperature.

View Article and Find Full Text PDF

A comprehensive molecular analysis of a simple aqueous complexing system-U(VI) acetate-selected to be independently investigated by various spectroscopic (vibrational, luminescence, X-ray absorption, and nuclear magnetic resonance spectroscopy) and quantum chemical methods was achieved by an international round-robin test (RRT). Twenty laboratories from six different countries with a focus on actinide or geochemical research participated and contributed to this scientific endeavor. The outcomes of this RRT were considered on two levels of complexity: first, within each technical discipline, conformities as well as discrepancies of the results and their sources were evaluated.

View Article and Find Full Text PDF

The ability to functionalize hydrocarbons with CO could create opportunities for high-volume CO utilization. However, current methods to form carbon-carbon bonds between hydrocarbons and CO require stoichiometric consumption of very resource-intensive reagents to overcome the low reactivity of these substrates. Here, we report a simple semi-continuous cycle that converts aromatic hydrocarbons, CO and alcohol into aromatic esters without consumption of stoichiometric reagents.

View Article and Find Full Text PDF

We present a novel nuclear magnetic resonance (NMR) probe design focused on optimizing the temperature gradient across the sample for high temperature magic angle spinning (MAS) experiments using standard rotors. Computational flow dynamics (CFD) simulations were used to assess and optimize the temperature gradient across the sample under MAS conditions. The chemical shift and linewidth of Pb direct polarization in lead nitrate were used to calibrate the sample temperature and temperature gradient, respectively.

View Article and Find Full Text PDF

Commercial Cu/SAPO-34 selective catalytic reduction (SCR) catalysts have experienced unexpected and quite perplexing failure. Understanding the causes at an atomic level is vital for the synthesis of more robust Cu/SAPO-34 catalysts. Here we show, via application of model catalysts with homogeneously dispersed isolated Cu ions, that Cu transformations resulting from low-temperature hydrothermal aging and ambient temperature storage can be semi-quantitatively probed with 2-dimensional pulsed electron paramagnetic resonance.

View Article and Find Full Text PDF

We investigated the extent to which contact with mineral surfaces affected the molecular integrity of a model protein, with an emphasis on identifying the mechanisms (hydrolysis, oxidation) and conditions leading to protein alteration. To this end, we studied the ability of four mineral surface archetypes (negatively charged, positively charged, neutral, redox-active) to abiotically fragment a well-characterized protein (GB1) as a function of pH and contact time. GB1 was exposed to the soil minerals montmorillonite, goethite, kaolinite, and birnessite at pH 5 and pH 7 for 1, 8, 24, and 168 h and the supernatant was screened for peptide fragments using Tandem Mass Spectrometry.

View Article and Find Full Text PDF

NMR methods were utilized to monitor the in situ structural and dynamic changes of various species in highly alkaline tetramethylammonium (TMA) silicate solutions. Quantitative 29Si NMR, 1H, 2H, and 17O relaxation NMR, and 1H and 29Si diffusion NMR of silicates, TMA, H2O and D2O demonstrate that the growth of the cubic octamer Q38 is accompanied by reduced water mobility and increasing TMA coordination number per Q38, which reaches an equilibrium value of 4.5 at 15 °C.

View Article and Find Full Text PDF

When using nuclear magnetic resonance (NMR) to assist in chemical identification in complex samples, researchers commonly rely on databases for chemical shift spectra. However, authentic standards are typically depended upon to build libraries experimentally. Considering complex biological samples, such as blood and soil, the entirety of NMR spectra required for all possible compounds would be infeasible to ascertain due to limitations of available standards and experimental processing time.

View Article and Find Full Text PDF

Understanding fundamental Tc chemistry is important to both the remediation of nuclear waste and the reprocessing of nuclear fuel; however, current knowledge of the electronic structure and spectral signatures of low-valent Tc compounds significantly lags behind the remainder of the d-block elements. In particular, identification and treatment of Tc speciation in legacy nuclear waste is challenging due to the lack of reference data especially for Tc compounds in the less common oxidation states (I-VI). In an effort to establish a spectroscopic library corresponding to the relevant conditions of extremely high ionic strength typical for the legacy nuclear waste, compounds with the general formula of [ fac-Tc(CO)(OH)(OH) ] (where n = 0-3) were examined by a range of spectroscopic techniques including Tc/C NMR, IR, XPS, and XAS.

View Article and Find Full Text PDF

The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Herein, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers.

View Article and Find Full Text PDF

The degradation and turnover of soil organic matter is an important part of global carbon cycling and of particular importance with respect to attempts to predict the response of ecosystems to global climate change. Thus, it is important to mechanistically understand the processes by which organic matter can be degraded in the soil environment, including contact with reactive or catalytic mineral surfaces. We have characterized the outcome of the interaction of two minerals, birnessite and kaolinite, with two disaccharides, cellobiose and trehalose.

View Article and Find Full Text PDF

We present the numerical optimization and experimental characterization of two microstrip-based nuclear magnetic resonance (NMR) detectors. The first detector, introduced in our previous work, was a flat wire detector with a strip resting on a substrate, and the second detector was created by adding a ground plane on top of the strip conductor, separated by a sample-carrying capillary and a thin layer of insulator. The dimensional parameters of the detectors were optimized using numerical simulations with regards to radio frequency (RF) sensitivity and homogeneity, with particular attention given to the effect of the ground plane.

View Article and Find Full Text PDF