We developed a novel, highly accurate, capillary based vacuum-assisted microdissection device CTAS-Cell and Tissue Acquisition System, for efficient isolation of enriched cell populations from live and freshly frozen tissues, which can be successfully used in a variety of molecular studies, including genomics and proteomics. Specific diameter of the disposable capillary unit (DCU) and precisely regulated short vacuum impulse ensure collection of the desired tissue regions and even individual cells. We demonstrated that CTAS is capable of dissecting specific regions of live and frozen mouse and rat brain tissues at the cellular resolution with high accuracy.
View Article and Find Full Text PDFDespite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls.
View Article and Find Full Text PDFAccumulation of neurotoxic hyperphosphorylated TAU protein is a major pathological hallmark of Alzheimer disease and other neurodegenerative dementias collectively called tauopathies. Puromycin-sensitive aminopeptidase (PSA/NPEPPS) is a novel modifier of TAU-induced neurodegeneration with neuroprotective effects via direct proteolysis of TAU protein. Here, to examine the effects of PSA/NPEPPS overexpression in vivo in the mammalian system, we generated and crossed BAC-PSA/NPEPPS transgenic mice with the TAU(P301L) mouse model of neurodegeneration.
View Article and Find Full Text PDFAdvances in genomics and proteomics permit rapid identification of disease-relevant genes and proteins. Challenges include biological differences between animal models and human diseases, high discordance between DNA and protein expression data and a lack of experimental models to study human complex diseases. To overcome some of these limitations, we developed an integrative approach using animal models, postmortem human material and a combination of high-throughput microarray methods to identify novel molecular markers of amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDF