Publications by authors named "Nancy Terryn"

Eleven day-old grass pea plants (Lathyrus sativus L.) were grown hydroponically for 96 h in the presence of 0.5 mM lead nitrate (Pb(NO(3))(2)).

View Article and Find Full Text PDF

Production of high-value recombinant proteins in transgenic seeds is an attractive and economically feasible alternative to conventional systems based on mammalian cells and bacteria. In contrast to leaves, seeds allow high-level accumulation of recombinant proteins in a relatively small volume and a stable environment. We demonstrate that single-chain variable fragment (scFv)-Fc antibodies, with N-terminal signal sequence and C-terminal KDEL tag, can accumulate to very high levels as bivalent IgG-like antibodies in Arabidopsis thaliana seeds and illustrate that a plant-produced anti-hepatitis A virus scFv-Fc has similar antigen-binding and in vitro neutralizing activities as the corresponding full-length IgG.

View Article and Find Full Text PDF

Phaseolus beans are among the major legumes for food consumption, especially in Latin America, Africa, and Asia. Tepary bean (Phaseolus acutifolius L. Gray) is one of the five cultivated species of the genus Phaseolus.

View Article and Find Full Text PDF

Light conditions during Agrobacterium-based plant transformation, the most routinely used method in plant genetic engineering, differ widely and, to our knowledge, have not been studied systematically in relation to transformation efficiency. Here, light effects were examined in two already optimized transformation procedures: coculture of Agrobacterium tumefaciens with callus from two genotypes of the crop plant Phaseolus acutifolius (tepary bean) and coculture of root segments from two ecotypes of Arabidopsis thaliana. Except for the light conditions during coculture, all steps followed established procedures.

View Article and Find Full Text PDF

The products of the cellulose synthase A (CESA) gene family are thought to function as isoforms of the cellulose synthase catalytic subunit, but for most CESA genes, the exact role in plant growth is still unknown. Assessing the function of individual CESA genes will require the identification of the null-mutant phenotypes and of the gene expression profiles for each gene. Here, we report that only four of 10 CESA genes, CESA1, CESA2, CESA3, and CESA9 are significantly expressed in the Arabidopsis embryo.

View Article and Find Full Text PDF