Publications by authors named "Nancy Terrier"

Objective: Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important grain produced in the world. Interest for cultivating sorghum is increasing all over the world in the context of climate change, due to its low input and water requirements.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers utilized a diverse collection of 279 grapevine cultivars over several years, analyzing 127 different traits related to yield and quality, while employing advanced genetic mapping techniques.
  • * The findings revealed 489 reliable quantitative trait loci (QTLs), significantly enhancing the identification of genetic variations and providing insights for future breeding strategies, including the discovery of new candidate genes.
View Article and Find Full Text PDF

Native African cereals (sorghum, millets) ensure food security to millions of low-income people from low fertility and drought-prone regions of Africa and Asia. In spite of their agronomic importance, the genetic bases of their phenotype and adaptations are still not well-understood. Here we focus on , which is the fifth cereal worldwide for grain production and constitutes the staple food for around 500 million people.

View Article and Find Full Text PDF

Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined.

View Article and Find Full Text PDF

The presence of monomeric and dimeric flavan-3-ol monohexosides was investigated in grapes and wines. Polyphenol extracts were prepared from grape seeds and skins (Syrah, Merlot, and Cabernet-Sauvignon) sampled at three different developmental stages. Different wines (Tannat, Alicante, Syrah, Merlot, and Grenache) were also studied.

View Article and Find Full Text PDF

Grapevine (Vitis vinifera L.) berry synthesizes and accumulates a large array of phenolic compounds (e.g.

View Article and Find Full Text PDF

Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. A major challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms.

View Article and Find Full Text PDF

Background: Monastrell is a red grape cultivar adapted to the dry environmental conditions of Murcia, SE Spain. Its berries seem to be characterized by a rigid cell wall structure, which could make difficult the winemaking process. Cabernet Sauvignon cultivar is used to complement Monastrell wines in this region owing to its high phenolic content with high extractability.

View Article and Find Full Text PDF

A rapid, sensitive, and selective analysis method using ultra high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) has been developed for the characterization and quantification of grape skin flavan-3-ols after acid-catalysed depolymerization in the presence of phloroglucinol (phloroglucinolysis). The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, this fast gradient robust method allows analysis of constitutive units of grape skin proanthocyanidins, including some present in trace amounts, in a single injection, with a throughput of 6 samples per hour. This method was applied to a set of 214 grape skin samples from 107 different red and white grape cultivars grown under two conditions in the vineyard, irrigated or non-irrigated.

View Article and Find Full Text PDF

In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth.

View Article and Find Full Text PDF

Phenolic compounds are secondary metabolites involved in several plant growth and development processes, including resistance to biotic and abiotic stresses. The biosynthetic pathways leading to the vast diversity of plant phenolic products often include an acylation step, with phenolic compounds being the donor or acceptor molecules. To date, two acyltransferase families using phenolic compounds as acceptor or donor molecules have been described, with each using a different 'energy-rich' acyl donor.

View Article and Find Full Text PDF
Article Synopsis
  • Flavonoids, particularly proanthocyanidins (PAs), are important compounds in grapes that affect the quality of fruit and wine, yet their regulatory mechanisms are not well understood.
  • The study identified 21 expression quantitative trait loci (eQTLs) related to PA synthesis genes, revealing a polygenic regulatory mechanism behind their biosynthesis.
  • A specific gene, VvMYBC2-L1, was highlighted for its role in regulating PA production, as its overexpression decreased PA levels and down-regulated PA-related genes.
View Article and Find Full Text PDF

Proanthocyanidins (PA) play a major role in plant protection against biotic and abiotic stresses. Moreover these molecules are known to be beneficial for human health and are responsible for astringency of foods and beverages such as wine and thus have a great impact on the final quality of the product. Genes playing a role in the PA pathway are only partially known.

View Article and Find Full Text PDF
Article Synopsis
  • eQTL mapping is a technique used to understand how genetic variations affect gene expression, which contributes to natural differences in characteristics, but it’s rarely used in woody plants due to sampling challenges.
  • The researchers focused on grapevine and analyzed a key enzyme (VvUFGT) involved in berry color, using data from a specific cross of grape varieties (Syrah and Grenache) to perform the mapping in a controlled field experiment.
  • They discovered two significant eQTLs: one that directly affects VvUFGT expression (cis-eQTL) and one that influences it indirectly (trans-eQTL) through related transcription factors, providing valuable insights into the genetics of grape skin color.
View Article and Find Full Text PDF

Background: Proanthocyanidins (PAs), or condensed tannins, are flavonoid polymers, widespread throughout the plant kingdom, which provide protection against herbivores while conferring organoleptic and nutritive values to plant-derived foods, such as wine. However, the genetic basis of qualitative and quantitative PA composition variation is still poorly understood. To elucidate the genetic architecture of the complex grape PA composition, we first carried out quantitative trait locus (QTL) analysis on a 191-individual pseudo-F1 progeny.

View Article and Find Full Text PDF

Background: The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting.

View Article and Find Full Text PDF

In cells, anthocyanin pigments are synthesized at the cytoplasmic surface of the endoplasmic reticulum, and are then transported and finally accumulated inside the vacuole. In Vitis vinifera (grapevine), two kinds of molecular actors are putatively associated with the vacuolar sequestration of anthocyanins: a glutathione-S-transferase (GST) and two MATE-type transporters, named anthoMATEs. However, the sequence of events by which anthocyanins are imported into the vacuole remains unclear.

View Article and Find Full Text PDF

Background: Phytoplasmas are bacteria without cell walls from the class Mollicutes. They are obligate intracellular plant pathogens which cause diseases in hundreds of economically important plants including the grapevine (Vitis vinifera). Knowledge of their biology and the mechanisms of their interactions with hosts is largely unknown because they are uncultivable and experimentally inaccessible in their hosts.

View Article and Find Full Text PDF

In grapevine (Vitis vinifera), anthocyanins are responsible for most of the red, blue, and purple pigmentation found in the skin of berries. In cells, anthocyanins are synthesized in the cytoplasm and accumulated into the vacuole. However, little is known about the transport of these compounds through the tonoplast.

View Article and Find Full Text PDF

Grapevine (Vitis vinifera) proanthocyanidins contribute to plant defense mechanisms against biotic stress and also play a critical role in organoleptic properties of wine. In grapevine berry, these compounds are mainly accumulated in exocarps and seeds in the very early stages of development. A previous study has already identified VvMybPA1 as the first transcription factor involved in the regulation of the proanthocyanidin pathway during seed development in grapevine.

View Article and Find Full Text PDF

The colour of the red wine is essentially due to the release of anthocyanins from the red skin of grape berries during the process of wine making. Anthocyanins are synthesized during ripening of the berries under the control of VvMYBA1 transcription factor that controls the expression of UFGT. In order to identify the whole set of downstream regulated genes, we targeted constitutive ectopic expression of VlmybA1-2 into grapevine hairy roots and plants.

View Article and Find Full Text PDF

Grape is considered as a non-climacteric fruit, the maturation of which is independent of ethylene. However, previous work had shown that ethylene is capable of affecting the physiological processes during maturation of grape berries. Experiments were designed to screen the gene pool affected by ethylene at the ripening inception in Cabernet Sauvignon berries.

View Article and Find Full Text PDF

An extraction method on grape berry was optimized for the total flavan-3-ol content measurement with regard to the nature of the sample and the duration of its extraction. This extraction was performed for the first time on the whole pericarp. Flavan-3-ol extractions were achieved on Shiraz ripe samples of pericarp versus skin within different durations: the best results were obtained for the whole pericarp and 1 h duration.

View Article and Find Full Text PDF

A recombinant carotenoid cleavage dioxygenase from Vitis vinifera L. was produced by Escherichia coli as a fusion with the glutathione-S-transferase (GST) protein under different bacterial growth conditions. The enzyme production was monitored by a GST assay.

View Article and Find Full Text PDF

Fruit morphogenesis is a process unique to the angiosperms, and yet little is known about its developmental control. Following fertilization, fruits typically undergo a dramatic enlargement that is accompanied by differentiation of numerous distinct cell types. To identify genes putatively involved in the early development of grapevine fruit, we used the fleshless berry mutant (Vitis vinifera L.

View Article and Find Full Text PDF