Publications by authors named "Nancy Searby"

Space travel and prolonged bed rest cause bone loss due to musculoskeletal disuse. In space, radiation fields may also have detrimental consequences because charged particles traversing the tissues of the body can elicit a wide range of cytotoxic and genotoxic lesions. The effects of heavy-ion radiation exposure in combination with musculoskeletal disuse on bone cells and tissue are not known.

View Article and Find Full Text PDF

Exposure of astronauts in space to radiation during weightlessness may contribute to subsequent bone loss. Gamma irradiation of postpubertal mice rapidly increases the number of bone-resorbing osteoclasts and causes bone loss in cancellous tissue; similar changes occur in skeletal diseases associated with oxidative stress. Therefore, we hypothesized that increased oxidative stress mediates radiation-induced bone loss and that musculoskeletal disuse changes the sensitivity of cancellous tissue to radiation exposure.

View Article and Find Full Text PDF

Ionizing radiation can cause substantial tissue degeneration, which may threaten the long-term health of astronauts and radiotherapy patients. To determine whether a single dose of radiation acutely compromises structural integrity in the postpubertal skeleton, 18-week-old male mice were exposed to (137)Cs gamma radiation (1 or 2 Gy). The structure of high-turnover, cancellous bone was analyzed by microcomputed tomography (microCT) 3 or 10 days after irradiation and in basal controls (tissues harvested at the time of irradiation) and age-matched controls.

View Article and Find Full Text PDF

The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively).

View Article and Find Full Text PDF

Cells respond to a wide range of mechanical stimuli such as fluid shear and strain, although the contribution of gravity to cell structure and function is not understood. We hypothesized that bone-forming osteoblasts are sensitive to increased mechanical loading by hypergravity. A centrifuge suitable for cell culture was developed and validated, and then primary cultures of fetal rat calvarial osteoblasts at various stages of differentiation were mechanically loaded using hypergravity.

View Article and Find Full Text PDF

The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.

View Article and Find Full Text PDF

Controlled in vitro studies of cells and tissues under the conditions of microgravity (simulated on Earth, or actual in space) can improve our understanding of gravity sensing, transduction, and responses in living cells and tissues. This paper discusses the scientific results and practical implications of three NASA-related biotechnology projects: ground and space studies of microgravity tissue engineering (JSC-Houston), and the development of the cell culture unit for use aboard the International Space Station (ARC-Ames).

View Article and Find Full Text PDF