Publications by authors named "Nancy S Longo"

To determine the impact of the milieu on the development of the human B cell repertoire, we carried out a comprehensive analysis of productive and nonproductive Ig gene rearrangements from transgenic mice engineered to express single copies of the unrearranged human H chain and L chain Ig gene loci. By examining the nonproductive repertoire as an indication of the immediate product of the rearrangement machinery without an impact of selection, we discovered that the distribution of human rearrangements arising in the mouse was generally comparable to that seen in humans. However, differences between the distribution of nonproductive and productive rearrangements that reflect the impact of selection suggested species-specific selection played a role in shaping the respective repertoires.

View Article and Find Full Text PDF

Unlabelled: One of the goals of HIV-1 vaccine development is the elicitation of neutralizing antibodies against vulnerable regions on the envelope glycoprotein (Env) viral spike. Broadly neutralizing antibodies targeting the Env glycan-V3 region (also called the N332 glycan supersite) have been described previously, with several single lineages each derived from different individual donors. We used a high-throughput B-cell culture method to isolate neutralizing antibodies from an HIV-1-infected donor with high serum neutralization breadth.

View Article and Find Full Text PDF

Antibody 10E8 targets the membrane-proximal external region (MPER) of HIV-1 gp41, neutralizes >97% of HIV-1 isolates, and lacks the auto-reactivity often associated with MPER-directed antibodies. The developmental pathway of 10E8 might therefore serve as a promising template for vaccine design, but samples from time-of-infection-often used to infer the B cell record-are unavailable. In this study, we used crystallography, next-generation sequencing (NGS), and functional assessments to infer the 10E8 developmental pathway from a single time point.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on antibodies that bind to the CD4 receptor site on the HIV-1 gp120 glycoprotein, which are important because they can neutralize a majority of HIV-1 strains.
  • The study identified and analyzed 16 different co-crystal structures of these CD4-binding-site antibodies, categorizing them into two types based on their recognition modes and development: CDR H3-dominated and VH-gene-restricted.
  • Despite differences in their chemical structures, all antibody complexes displayed similar geometric shapes, and the effectiveness of antibody neutralization was linked to how they approached the gp120 protein.
View Article and Find Full Text PDF

Background: Partitioning the human immunoglobulin variable region into variable (V), diversity (D), and joining (J) segments is a common sequence analysis step. We introduce a novel approximate dynamic programming method that uses conserved immunoglobulin gene motifs to improve performance of aligning V-segments of rearranged immunoglobulin (Ig) genes. Our new algorithm enhances the former JOINSOLVER algorithm by processing sequences with insertions and/or deletions (indels) and improves the efficiency for large datasets provided by high throughput sequencing.

View Article and Find Full Text PDF

HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades.

View Article and Find Full Text PDF

Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.

View Article and Find Full Text PDF

Isolation of monoclonal antibodies is an important technique for understanding the specificities and characteristics of antibodies that underlie the humoral immune response to a given antigen. Here we describe a technique for isolating monoclonal antibodies from human peripheral blood mononuclear cells. The protocol includes strategies for the isolation of switch-memory B cells from peripheral blood, the culture of B cells, the removal of the supernatant for screening and the lysis of B cells in preparation for immunoglobulin heavy-chain and light-chain amplification and cloning.

View Article and Find Full Text PDF

Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >10(12) antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing.

View Article and Find Full Text PDF

Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities.

View Article and Find Full Text PDF

The gp120 CD4 binding site (CD4bs) and coreceptor binding site (CoRbs) are two functionally conserved elements of the HIV-1 envelope glycoproteins (Env). We previously defined the presence of CD4bs-neutralizing antibodies in the serum of an HIV-1-infected individual and subsequently isolated the CD4bs-specific monoclonal antibodies (MAbs) VRC01 and VRC03 from the memory B cell population. Since this donor's serum also appeared to contain neutralizing antibodies to the CoRbs, we employed a differential fluorescence-activated cell sorter (FACS)-based sorting strategy using an Env trimer possessing a CoRbs knockout mutation (I420R) to isolate specific B cells.

View Article and Find Full Text PDF

Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope.

View Article and Find Full Text PDF

Background: Antibodies (Abs) produced during HIV-1 infection rarely neutralize a broad range of viral isolates; only eight broadly-neutralizing (bNt) monoclonal (M)Abs have been isolated. Yet, to be effective, an HIV-1 vaccine may have to elicit the essential features of these MAbs. The V genes of all of these bNt MAbs are highly somatically mutated, and the V(H) genes of five of them encode a long (≥ 20 aa) third complementarity-determining region (CDR-H3).

View Article and Find Full Text PDF

Cross-reactive neutralizing antibodies (NAbs) are found in the sera of many HIV-1-infected individuals, but the virologic basis of their neutralization remains poorly understood. We used knowledge of HIV-1 envelope structure to develop antigenically resurfaced glycoproteins specific for the structurally conserved site of initial CD4 receptor binding. These probes were used to identify sera with NAbs to the CD4-binding site (CD4bs) and to isolate individual B cells from such an HIV-1-infected donor.

View Article and Find Full Text PDF

Several human monoclonal antibodies (hmAbs) including b12, 2G12, and 2F5 exhibit relatively potent and broad HIV-1-neutralizing activity. However, their elicitation in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env) has not been successful. We have hypothesized that HIV-1 has evolved a strategy to reduce or eliminate the immunogenicity of the highly conserved epitopes of such antibodies by using "holes" (absence or very weak binding to these epitopes of germline antibodies that is not sufficient to initiate and/or maintain an efficient immune response) in the human germline B cell receptor (BCR) repertoire.

View Article and Find Full Text PDF
Article Synopsis
  • X-linked hyper-IgM syndrome (X-HIgM) features low memory B cell counts and reduced somatic hypermutation (SHM) in immunoglobulin genes.
  • Sequencing of Ig heavy chain genes revealed that mutations predominantly occur in specific motifs, but there is a notable decrease in mutations targeting the G residues, particularly in RGYW motifs.
  • Microarray analysis shows that genes important for SHM, like AICDA and UNG2, are activated in normal B cells but not in X-HIgM due to the lack of CD40-CD154 interactions, leading to reduced mutation rates.
View Article and Find Full Text PDF

V(H) replacement is a form of IgH chain receptor editing that is believed to be mediated by recombinase cleavage at cryptic recombination signal sequences (cRSS) embedded in V(H) genes. Whereas there are several reports of V(H) replacement in primary and transformed human B cells and murine models, it remains unclear whether V(H) replacement contributes to the normal human B cell repertoire. We identified V(H)-->V(H)(D)J(H) compound rearrangements from fetal liver, fetal bone marrow, and naive peripheral blood, all of which involved invading and recipient V(H)4 genes that contain a cryptic heptamer, a 13-bp spacer, and nonamer in the 5' portion of framework region 3.

View Article and Find Full Text PDF

Somatic hypermutation (SHM) of Ig genes depends upon the deamination of C nucleotides in WRCY (W = A/T, R = A/G, Y = C/T) motifs by activation-induced cytidine deaminase (AICDA). Despite this, a large number of mutations occur in WA motifs that can be accounted for by the activity of polymerase eta (POL eta). To determine whether there are AICDA-independent mutations and to characterize the relationship between AICDA- and POL eta-mediated mutations, 1470 H chain and 1313 kappa- and lambda-chain rearrangements from three AICDA(-/-) patients were analyzed.

View Article and Find Full Text PDF

Objective: Triptolide and tripdiolide are thought to be active components of the Chinese antirheumatic herbal remedy Tripterygium wilfordii Hook F, which has been shown to be effective in treating murine lupus nephritis. This study was undertaken to examine the therapeutic effect of triptolide and tripdiolide on established lupus nephritis in (NZB x NZW)F1 mice.

Methods: (NZB x NZW)F1 mice were treated with vehicle, triptolide, or tripdiolide for 15 weeks beginning at the age of 29 weeks (after the development of lupus nephritis).

View Article and Find Full Text PDF

V(D)J recombination is essential to produce an Ig repertoire with a large range of Ag specificities. Although NF-kappaB-binding sites are present in the human and mouse IgH, Igkappa, and Iglambda enhancer modules and RAG expression is controlled by NF-kappaB, it is not known whether NF-kappaB regulates V(D)J recombination mechanisms after RAG-mediated dsDNA breaks. To clarify the involvement of NF-kappaB in human V(D)J recombination, we amplified Ig gene rearrangements from individual peripheral B cells of patients with X-linked anhidrotic ectodermal dysplasia with hyper-IgM syndrome (HED-ID) who have deficient expression of the NF-kappaB essential modulator (NEMO/Ikkgamma).

View Article and Find Full Text PDF
Article Synopsis
  • Monoclonal B cell lymphocytosis (MBL) was found in four unaffected family members of a patient with chronic lymphocytic leukaemia (CLL), indicating potential genetic links.
  • The unaffected relatives were monitored for five years and exhibited signs of MBL through various advanced testing methods, suggesting a clonal B-cell population.
  • This research highlights the importance of studying the immune system's response and its relation to CLL, providing insights into how familial connections might influence lymphoid cancer development.
View Article and Find Full Text PDF
Article Synopsis
  • B cells can make many point mutations in their immunoglobulin genes during germinal center reactions to improve their ability to fight infections.
  • Somatic hypermutation (SHM) and affinity maturation help create effective memory B cells and antibodies, but high-affinity binding isn’t always necessary for an immune response.
  • SHM may instead help B cells keep up with rapidly changing antigens from pathogens, rather than solely enhancing binding strength.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the effectiveness of ethyl acetate extract from Tripterygium wilfordii in treating systemic lupus erythematosus in NZB/W F1 mice.
  • Mice were divided into three groups: one received a vehicle, while the other two groups received low and high doses of the extract over 14 weeks.
  • Results showed significant reduction in proteinuria and milder kidney damage in treated groups compared to the vehicle group, but no notable change in anti-dsDNA antibody levels.
View Article and Find Full Text PDF

Protein A (SpA) of Staphylococcus aureus is endowed with the capacity to interact with the H chain variable region (V(H)) of human Abs and to target >40% of B lymphocytes. To investigate whether this property represents a virulence factor and to determine the in vivo consequences of the confrontation of SpA with B lymphocytes, we used transgenic mice expressing fully human Abs. We found that administration of soluble SpA reduces B-1a lymphocytes of the peritoneal cavity and marginal zone B lymphocytes of the spleen, resulting in a markedly deficient type 2 humoral response.

View Article and Find Full Text PDF

Some pathogens have evolved to produce proteins, called B-cell superantigens, that can interact with human immunoglobulin variable regions, independently of the combining site, and activate B lymphocytes that express the target immunoglobulins. However, the in vivo consequences of these interactions on human B-cell numbers and function are largely unknown. Using transgenic mice expressing fully human immunoglobulins, we studied the consequences of in vivo exposure of protein L of Peptostreptococcus magnus with human immunoglobulins.

View Article and Find Full Text PDF