Background/aims: Hypercalciuria is the most common identifiable risk factor predisposing to CaOx stone formation. Increased oral magnesium intake may lead to decreased CaOx stone formation by binding intestinal Ox leading to decreased absorption and/or binding urinary Ox to decrease urinary supersaturation. This study assessed the effect of oral magnesium on 24-h urine ion excretion, supersaturation, and kidney stone formation in a genetic hypercalciuric stone-forming (GHS) rat model of human idiopathic hypercalciuria.
View Article and Find Full Text PDFMetabolic acidosis (MET) stimulates bone resorption through inhibition of osteoblast (OB) bone formation and stimulation of osteoclast (OC) bone resorption. We found that OGR1, a G protein-coupled proton (H)-sensing receptor, was critical for initial H signaling in the OB. In mice with a global deletion of OGR1, we demonstrated that loss of OGR1 impairs H-induced bone resorption, leading to increased bone density through effects on both the OB and OC.
View Article and Find Full Text PDFThe homeostatic regulation of a stable systemic pH is of critical importance for mammalian survival. During metabolic acidosis (a reduction in systemic pH caused by a primary decrease in serum bicarbonate concentration), as seen in clinical disorders such as the later stages of chronic kidney disease, renal tubular acidosis, or chronic diarrhea, bone buffers the accumulated acid; however, this homeostatic function of the skeleton occurs at the expense of the bone mineral content and leads to decreased bone quality. During short-term studies to model acute metabolic acidosis, there is initial physiochemical bone mineral dissolution, releasing carbonate and phosphate proton buffers into the extracellular fluid.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2021
Chronic metabolic acidosis stimulates cell-mediated net Ca efflux from bone mediated by increased osteoblastic cyclooxygenase 2, leading to prostaglandin E-induced stimulation of receptor activator of NF-κB ligand-induced osteoclastic bone resorption. Ovarian cancer G protein-coupled receptor-1 (OGR1), an osteoblastic H-sensing G protein-coupled receptor, is activated by acidosis and leads to increased bone resorption. As regulator of G protein signaling (RGS) proteins limit GPCR signaling, we tested whether RGS proteins themselves are regulated by metabolic acidosis.
View Article and Find Full Text PDFTo study human idiopathic hypercalciuria we developed an animal model, genetic hypercalciuric stone-forming rats, whose pathophysiology parallels that of human idiopathic hypercalciuria. Fed the oxalate precursor, hydroxyproline, every rat in this model develops calcium oxalate stones. Using this rat model, we tested whether chlorthalidone and potassium citrate combined would reduce calcium oxalate stone formation and improve bone quality more than either agent alone.
View Article and Find Full Text PDFAntibiotics can alter the gut microbiome (GMB), which may be associated with stone disease. We sought to determine the effect that antibiotics have on the GMB, urine ion excretion and stone formation in genetic hypercalciuric stone-forming (GHS) rats. 116th generation GHS rats were fed a fixed amount of a normal calcium (1.
View Article and Find Full Text PDFMetabolic acidosis induces osteoclastic bone resorption and inhibits osteoblastic bone formation. Previously we found that mice with a global deletion of the proton receptor OGR1 had increased bone density although both osteoblast and osteoclast activity were increased. To test whether direct effects on osteoclast OGR1 are critical for metabolic acidosis stimulated bone resorption, we generated knockout mice with an osteoclast-specific deletion of OGR1 (knockout mice).
View Article and Find Full Text PDFTo study human idiopathic hypercalciuria (IH), we developed an animal model, genetic hypercalciuric stone-forming (GHS) rats, whose pathophysiology parallels that in IH. All GHS rats form kidney stones and have decreased BMD and bone quality compared with the founder Sprague-Dawley (SD) rats. To understand the bone defect, we characterized osteoclast and osteoblast activity in the GHS compared with SD rats.
View Article and Find Full Text PDFBackground: The pathophysiology of genetic hypercalciuric stone-forming rats parallels that of human idiopathic hypercalciuria. In this model, all animals form calcium phosphate stones. We previously found that chlorthalidone, but not potassium citrate, decreased stone formation in these rats.
View Article and Find Full Text PDFBackground: Urine (u) calcium (Ca) excretion is directly dependent on dietary sodium (Na) intake leading to the recommendation for Na restriction in hypercalciuric kidney stone formers. However, there is no direct evidence that limiting Na intake will reduce recurrent stone formation.
Materials And Methods: We used genetic hypercalciuric stone-forming (GHS) rats, which universally form Ca phosphate (P) kidney stones, fed either a low Na (LNa, 0.
Serum fibroblast growth factor 23 (FGF23) increases progressively in chronic kidney disease (CKD) and is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the factors regulating its production are not clear. Patients with CKD have decreased renal acid excretion leading to metabolic acidosis (MET).
View Article and Find Full Text PDFChronic metabolic acidosis stimulates cell-mediated calcium efflux from bone through osteoblastic prostaglandin E2-induced stimulation of receptor activator of NF-kB ligand leading to increased osteoclastic bone resorption. Osteoblasts express the proton-sensing G-protein-coupled receptor OGR1, which activates inositol phosphate-mediated intracellular calcium. Proton-induced osteoblastic intracellular calcium signaling requires ovarian cancer G-protein-coupled receptor 1 (OGR1), suggesting that OGR1 is the sensor activated during acidosis to cause bone resorption.
View Article and Find Full Text PDFCurr Opin Nephrol Hypertens
July 2015
Purpose Of Review: In this review, we discuss how the genetic hypercalciuric stone-forming (GHS) rats, which closely model idiopathic hypercalciuria and stone formation in humans, provide insights into the pathophysiology and consequences of clinical hypercalciuria.
Recent Findings: Hypercalciuria in the GHS rats is due to a systemic dysregulation of calcium transport, as manifest by increased intestinal calcium absorption, increased bone resorption and decreased renal tubule calcium reabsorption. Increased levels of vitamin D receptor in intestine, bone and kidney appear to mediate these changes.
Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption.
View Article and Find Full Text PDFGenetic hypercalciuric stone-forming (GHS) rats demonstrate increased intestinal Ca absorption, increased bone resorption, and reduced renal tubular Ca reabsorption leading to hypercalciuria and all form kidney stones. GHS have increased vitamin D receptors (VDR) at these sites of Ca transport. Injection of 1,25(OH)2D3 (1,25D) leads to a greater increase in urine (u)Ca in GHS than in control Sprague-Dawley (SD), possibly due to the additional VDR.
View Article and Find Full Text PDFGenetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (u) calcium (Ca) excretion, demonstrate increased intestinal Ca absorption, increased bone Ca resorption, and reduced renal Ca reabsorption, all leading to elevated uCa compared to the parental Sprague-Dawley (SD) rats. GHS rats have increased numbers of vitamin D receptors (VDRs) at each site, with normal levels of 1,25(OH)₂D₃ (1,25D), suggesting their VDR is undersaturated with 1,25D. We have shown that 1,25D induces a greater increase in uCa in GHS than SD rats.
View Article and Find Full Text PDFThe inbred genetic hypercalciuric stone-forming (GHS) rats exhibit many features of human idiopathic hypercalciuria and have elevated levels of vitamin D receptors (VDR) in calcium (Ca)-transporting organs. On a normal-Ca diet, 1,25(OH)2D3 (1,25D) increases urine (U) Ca to a greater extent in GHS than in controls [Sprague-Dawley (SD)]. The additional UCa may result from an increase in intestinal Ca absorption and/or bone resorption.
View Article and Find Full Text PDFGenetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (U) calcium (Ca) excretion, have increased intestinal Ca absorption and bone Ca resorption and reduced renal Ca reabsorption, leading to increased UCa compared with the Sprague-Dawley (SD) rats. GHS rats have increased vitamin D receptors (VDR) at each of these sites, with normal levels of 1,25(OH)(2)D(3) (1,25D), indicating that their VDR is undersaturated with 1,25D. We tested the hypothesis that 1,25D would induce a greater increase in UCa in GHS rats by feeding both strains ample Ca and injecting 1,25D (25 ng · 100 g body wt(-1) · day(-1)) or vehicle for 16 days.
View Article and Find Full Text PDFHypercalciuria is the most common metabolic abnormality found in patients with calcium-containing kidney stones. Patients with hypercalciuria often excrete more calcium than they absorb, indicating a net loss of total-body calcium. The source of this additional urinary calcium is almost certainly the skeleton, the largest repository of calcium in the body.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2012
Fibroblast growth factor 23 (FGF23) significantly increases with declining renal function, leading to reduced renal tubular phosphate reabsorption, decreased 1,25-dihydroxyvitamin D, and increased left ventricular hypertrophy. Elevated FGF23 is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the mechanisms by which it is regulated are not clear.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2011
In vivo chronic metabolic acidosis induces net Ca2+ efflux from bone, and incubation of neonatal mouse calvariae in medium simulating physiological metabolic acidosis induces bone resorption. It appears that activation of the proton (H+) receptor OGR1 in the osteoblast leads to an increase in intracellular Ca2+, which is associated with an increase in cyclooxygenase 2 (COX2) and PGE2-induced receptor activator of NF-κB ligand (RANKL) and H+-induced osteoclastic bone resorption. To support this hypothesis, we tested whether intracellular Ca2+ signaling was integral to H+-induced bone resorption by determining whether 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) and 2-aminoethoxydiphenyl borate (2-APB), inhibitors of inositol trisphosphate-mediated Ca2+ signaling, would block H+-induced bone resorption in cultured neonatal calvariae and, if so, would do so by inhibiting H+-induced stimulation of COX2 and RANKL in osteoblastic cells.
View Article and Find Full Text PDFMetabolic acidosis increases urine Ca without increasing intestinal absorption, leading to bone Ca loss. It is unclear how bone cells detect the increase in proton concentration. To determine which G protein-coupled proton sensing receptors are expressed in bone, PCR was performed, and products were detected for OGR1, TDAG8, G2A, and GPR4.
View Article and Find Full Text PDFUnlabelled: Chronic metabolic acidosis induces net Ca efflux from bone; this osteoclastic bone resorption is mediated by increased osteoblastic prostaglandin synthesis. Cyclooxygenase, the rate-limiting enzyme in prostaglandin synthesis, is present in both constitutive (COX-1) and inducible (COX-2) forms. We report here that acidosis increases both osteoblastic RNA and protein levels for COX-2 and that genetic deficiency or pharmacologic inhibition of COX-2 significantly reduces acid-induced Ca efflux from bone.
View Article and Find Full Text PDFPurpose Of Review: This review presents our current understanding of the way metabolic acidosis induces calcium efflux from bone, and in the process, buffers additional systemic hydrogen ions associated with acidosis.
Recent Findings: Acid-induced changes in bone mineral are consistent with a role for bone as a proton buffer. In response to metabolic acidosis in an in-vitro bone organ culture system, we observed a fall in mineral sodium, potassium, carbonate and phosphate, which each buffer protons and in vivo should increase systemic pH towards the physiologic normal.
Metabolic acidosis increases urine calcium excretion without an increase in intestinal calcium absorption, resulting in a net loss of bone mineral. In vitro metabolic acidosis induces bone calcium efflux initially by physicochemical dissolution and subsequently by cell-mediated mechanisms involving inhibition of osteoblasts and stimulation of osteoclasts. In bone, prostaglandins (PGs) are important mediators of bone resorption and we have recently determined that acid-induced bone resorption is mediated by PGs.
View Article and Find Full Text PDF