In order to better understand and quantify the effect of instabilities in systems utilizing flow boiling heat transfer, the present study explores dynamic results for pressure drop, mass velocity, thermodynamic equilibrium quality, and heated wall temperature to ascertain and analyze the dominant modes in which they oscillate. Flow boiling experiments are conducted for a range of mass velocities with both subcooled and saturated inlet conditions in vertical upflow, vertical downflow, and horizontal flow orientations. High frequency pressure measurements are used to investigate the influence of individual flow loop components (flow boiling module, pump, pre-heater, condenser, ) on dynamic behavior of the fluid, with fast Fourier transforms of the same used to provide critical frequency domain information.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2012
Polarizable colloids are expected to form crystalline equilibrium phases when exposed to a steady, uniform field. However, when colloids become localized this field-induced phase transition arrests and the suspension persists indefinitely as a kinetically trapped, percolated structure. We anneal such gels formed from magneto-rheological fluids by toggling the field strength at varied frequencies.
View Article and Find Full Text PDF