Publications by authors named "Nancy Perez-Peralta"

A series of penta- and heteropentadienyl [CHCHCHCHXBe], (X = CH, O, NH, S) complexes has been theoretically studied. All calculated complexes show beryllium atoms with two, three, and five coordination numbers. The density functional theory (DFT) was used to determine the electron and structural behavior of those beryllium complexes.

View Article and Find Full Text PDF

The multicenter bonding pattern of the intriguing hexa-, hepta-, and octacoordinate boron wheel series (e.g., CB62-, CB7-, B82-, and SiB8 as well as the experimentally detected CB7- isomer) is revised using the block-localized wave function analyzed by the localized orbital locator (BLW-LOL).

View Article and Find Full Text PDF

The potential energy surface of C6 Li6 was re-examined and a new non-symmetric global minimum was found. The new structure can be described as three C2 (2-) fragments strongly aggregated through lithium bridges. At high temperatures, fluxionality is perceived instead of dissociation.

View Article and Find Full Text PDF

The potential energy surfaces of the Li(n)Si(4)(-) (n = 0-5) clusters were explored using the Kick Coalescence method. We found that, for those systems with n ≤ 2, the butterfly and parallelogram Si(4)(2-) kernels prevail as building blocks; however, when n ≥ 3, the Si(4)(4-) tetrahedral kernel, which is commonly found in heavier alkali monosilicides, MSi (M = Na, K, Rb, Cs), arises as the prevailing building block. In addition, by a natural population analysis (NPA) we found that the maximum charge transfer -4 from Li atoms to Si atoms is attained when n = 3.

View Article and Find Full Text PDF

We have explored in silico the potential energy surfaces of the C(5)Li(n)(n-6) (n = 5, 6, and 7) clusters using the Gradient Embedded Genetic Algorithm (GEGA) and other computational strategies. The most stable forms of C(5)Li(5)(-) and C(5)Li(6) are two carbon chains linked by two lithium atoms in a persistent seven membered ring capped by two Li atoms. The other Li atoms are arrayed on the edge of the seven membered ring.

View Article and Find Full Text PDF

Is it possible to achieve molecules with starlike structures by replacing the H atoms in (CH)(n)(q) aromatic hydrocarbons with aluminum atoms in bridging positions? Although D(4h) C(4)Al(4)(2-) and D(2) C(6)Al(6) are not good prospects for experimental realization, a very extensive computational survey of fifty C(5)Al(5)(-) isomers identified the starlike D(5h) global minimum with five planar tetracoordinate carbon atoms to be a promising candidate for detection by photoelectron detachment spectroscopy. BOMD (Born-Oppenheimer molecular dynamics) simulations and high-level theoretical computations verified this conclusion. The combination of favorable electronic and geometric structural features (including aromaticity and optimum C-Al-C bridge bonding) stabilizes the C(5)Al(5)(-) star preferentially.

View Article and Find Full Text PDF

We have computed the structure and stability of the xenon hydrides HXeY (with Y = F, Cl, Br, I, CCH, CN, NC) using relativistic density functional theory (DFT) at ZORA-BP86/TZ2P level. All model systems HXeY studied here are bound equilibrium structures, but they are also significantly destabilized with respect to Xe and HY. We have analyzed the bonding in HXeY in order to arrive at a simple picture that explains the main trends in stability.

View Article and Find Full Text PDF

We have explored in detail the potential energy surfaces of the Si(5)Li(n)(5-6) (n = 5-7) systems. We found that it is feasible to design three-dimensional star-like silicon structures using the appropriate ligands. The global minimum structure for Si(5)Li(7)(+) has a perfect seven-peak star-like structure.

View Article and Find Full Text PDF

A series of planar tetracoordinate carbon molecules in cyclic semisaturated hydrocarbons resulting from the combination of the C5(2-) skeleton with saturated hydrocarbon fragments is reported. The electronic stabilization and the bonding situation are studied through the analyses of molecular orbitals and the electron localization function. The magnetic properties are also revised, giving particular attention to the induced magnetic field.

View Article and Find Full Text PDF