Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood.
View Article and Find Full Text PDFThis study aimed to develop a rapid, 1 mm isotropic resolution, whole-brain MRI technique for automatic lesion segmentation and multi-parametric mapping without using contrast by continuously applying balanced steady-state free precession with inversion pulses throughout incomplete inversion recovery in a single 6 min scan. Modified k-means clustering was performed for automatic brain tissue and lesion segmentation using distinct signal evolutions that contained mixed T1/T2/magnetization transfer properties. Multi-compartment modeling was used to derive quantitative multi-parametric maps for tissue characterization.
View Article and Find Full Text PDFThis study aimed to implement a multimodal H/HP-C imaging protocol to augment the serial monitoring of patients with glioma, while simultaneously pursuing methods for improving the robustness of HP-C metabolic data. A total of 100 H/HP [1-C]-pyruvate MR examinations (104 HP-C datasets) were acquired from 42 patients according to the comprehensive multimodal glioma imaging protocol. Serial data coverage, accuracy of frequency reference, and acquisition delay were evaluated using a mixed-effects model to account for multiple exams per patient.
View Article and Find Full Text PDFBackground: Epigenetic inhibition of the () gene has emerged as a clinically relevant prognostic marker in glioblastoma (GBM). Methylation of the promoter has been shown to increase chemotherapy efficacy. While traditionally reported as a binary marker, recent methodological advancements have led to quantitative methods of measuring promoter methylation, providing clearer insight into its functional relationship with survival.
View Article and Find Full Text PDFBackground: Central nervous system (CNS) WHO grade 2 low-grade glioma (LGG) patients are at high risk for recurrence and with unfavorable long-term prognosis due to the treatment resistance and malignant transformation to high-grade glioma. Considering the relatively intact systemic immunity and slow-growing nature, immunotherapy may offer an effective treatment option for LGG patients.
Methods: We conducted a prospective, randomized pilot study to evaluate the safety and immunological response of the multipeptide IMA950 vaccine with agonistic anti-CD27 antibody, varlilumab, in CNS WHO grade 2 LGG patients.
Background: Dynamic hyperpolarized (HP)-C MRI has enabled real-time, non-invasive assessment of Warburg-related metabolic dysregulation in glioma using a [1-C]pyruvate tracer that undergoes conversion to [1-C]lactate and [C]bicarbonate. Using a multi-parametric H/HP-C imaging approach, we investigated dynamic and steady-state metabolism, together with physiological parameters, in high-grade gliomas to characterize active tumor.
Methods: Multi-parametric H/HP-C MRI data were acquired from fifteen patients with progressive/treatment-naïve glioblastoma [prog/TN GBM, IDH-wildtype (n = 11)], progressive astrocytoma, IDH-mutant, grade 4 (G4A, n = 2) and GBM manifesting treatment effects (n = 2).
Purpose: In patients with diffuse low-grade glioma (LGG), the extent of surgical tumor resection (EOR) has a controversial role, in part because a randomized clinical trial with different levels of EOR is not feasible.
Methods: In a 20-year retrospective cohort of 392 patients with IDH-mutant grade 2 glioma, we analyzed the combined effects of volumetric EOR and molecular and clinical factors on overall survival (OS) and progression-free survival by recursive partitioning analysis. The OS results were validated in two external cohorts (n = 365).
Background: Monitoring lower-grade gliomas (LrGGs) for disease progression is made difficult by the limits of anatomical MRI to distinguish treatment related tissue changes from tumor progression. MR spectroscopic imaging (MRSI) offers additional metabolic information that can help address these challenges. The goal of this study was to compare longitudinal changes in multiparametric MRI, including diffusion weighted imaging, perfusion imaging, and 3D MRSI, for LrGG patients who progressed at the final time-point and those who remained clinically stable.
View Article and Find Full Text PDFPurpose: Tumor Treating Fields (TTFields) therapy, a noninvasive, anti-mitotic treatment modality, is approved for recurrent glioblastoma (rGBM) and newly diagnosed GBM based on phase III, EF-11 (NCT00379470) and EF-14 (NCT00916409) studies, respectively. The EF-19 study aimed to evaluate efficacy and safety of TTFields monotherapy (200 kHz) vs physicians' choice standard of care (PC-SOC; EF-11 historical control group) in rGBM.
Methods: A prospective, post-marketing registry study of adults with supratentorial rGBM treated with TTFields therapy was conducted.
Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas.
View Article and Find Full Text PDFComposite pleomorphic xanthoastrocytoma-ganglioglioma (PXA-GG) is an extremely rare central nervous system neoplasm with 2 distinct but intermingled components. Whether this tumor represents a "collision tumor" of separate neoplasms or a monoclonal neoplasm with divergent evolution is poorly understood. Clinicopathologic studies and capture-based next generation sequencing were performed on extracted DNA from all available PXA-GG at 2 medical centers.
View Article and Find Full Text PDFIntroduction: Tumor Treating Fields (TTFields, 200 kHz) therapy is a noninvasive, locoregional cancer treatment approved for use in newly diagnosed glioblastoma (GBM), recurrent GBM, and malignant pleural mesothelioma. GBM patients with hydrocephalus may require implantation of a ventriculoperitoneal (VP) shunt, however, the current TTFields therapy label does not include the use of VP shunts in GBM patients due to insufficient safety data. This analysis evaluates the safety of TTFields therapy use in this population.
View Article and Find Full Text PDFBackground: Genomic profiling studies of diffuse gliomas have led to new improved classification schemes that better predict patient outcomes compared to conventional histomorphology alone. One example is the recognition that patients with IDH-wildtype diffuse astrocytic gliomas demonstrating lower-grade histologic features but genomic and/or epigenomic profile characteristic of glioblastoma typically have poor outcomes similar to patients with histologically diagnosed glioblastoma. Here we sought to determine the clinical impact of prospective genomic profiling for these IDH-wildtype diffuse astrocytic gliomas lacking high-grade histologic features but with molecular profile of glioblastoma.
View Article and Find Full Text PDFBackground: Increases in the extent of resection of both contrast-enhanced (CE) and non-contrast-enhanced (NCE) tissue are associated with substantial survival benefits in patients with isocitrate dehydrogenase wild-type glioblastoma. The fact, however, remains that these lesions exist within the framework of complex neural circuitry subserving cognition, movement, and behavior, all of which affect the ultimate survival outcome. The prognostic significance of the interplay between CE and NCE cytoreduction and neurological morbidity is poorly understood.
View Article and Find Full Text PDFBACKGROUNDLong-term prognosis of WHO grade II low-grade gliomas (LGGs) is poor, with a high risk of recurrence and malignant transformation into high-grade gliomas. Given the relatively intact immune system of patients with LGGs and the slow tumor growth rate, vaccines are an attractive treatment strategy.METHODSWe conducted a pilot study to evaluate the safety and immunological effects of vaccination with GBM6-AD, lysate of an allogeneic glioblastoma stem cell line, with poly-ICLC in patients with LGGs.
View Article and Find Full Text PDFBackground: Chemotherapy improves overall survival after surgery and radiotherapy for newly diagnosed high-risk IDH-mutant low-grade gliomas (LGGs), but a proportion of patients treated with temozolomide (TMZ) will develop recurrent tumors with TMZ-induced hypermutation. We aimed to determine the prevalence of TMZ-induced hypermutation at recurrence and prognostic implications.
Methods: We sequenced recurrent tumors from 82 patients with initially low-grade IDH-mutant gliomas who underwent reoperation and correlated hypermutation status with grade at recurrence and subsequent clinical outcomes.
Background: "Diffuse midline glioma (DMG), H3 K27M-mutant" is a new tumor entity established in the 2016 WHO classification of Tumors of the Central Nervous System that comprises a set of diffuse gliomas arising in midline structures and is molecularly defined by a K27M mutation in genes encoding the histone 3 variants H3.3 or H3.1.
View Article and Find Full Text PDFParagangliomas are neuroendocrine tumors of the autonomic nervous system that are variably clinically functional and have a potential for metastasis. Up to 40% occur in the setting of a hereditary syndrome, most commonly due to germline mutations in succinate dehydrogenase (SDHx) genes. Immunohistochemically, paragangliomas are characteristically GATA3-positive and cytokeratin-negative, with loss of SDHB expression in most hereditary cases.
View Article and Find Full Text PDF