Publications by authors named "Nancy Mokbel"

Grb10 is an adaptor-type signaling protein most highly expressed in tissues involved in insulin action and glucose metabolism, such as muscle, pancreas, and adipose. Germline deletion of Grb10 in mice creates a phenotype with larger muscles and improved glucose homeostasis. However, it has not been determined whether Grb10 ablation specifically in muscle is sufficient to induce hypermuscularity or affect whole body glucose metabolism.

View Article and Find Full Text PDF

Vitamin D deficiency is associated with muscle weakness, pain, and atrophy. Serum vitamin D predicts muscle strength and age-related muscle changes. However, precise mechanisms by which vitamin D affects skeletal muscle are unclear.

View Article and Find Full Text PDF

Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance).

View Article and Find Full Text PDF

Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin.

View Article and Find Full Text PDF

Vitamin D deficiency is associated with a range of muscle disorders, including myalgia, muscle weakness, and falls. In humans, polymorphisms of the vitamin D receptor (VDR) gene are associated with variations in muscle strength, and in mice, genetic ablation of VDR results in muscle fiber atrophy and motor deficits. However, mechanisms by which VDR regulates muscle function and morphology remain unclear.

View Article and Find Full Text PDF

Grb10 is an intracellular adaptor protein which binds directly to several growth factor receptors, including those for insulin and insulin-like growth factor receptor-1 (IGF-1), and negatively regulates their actions. Grb10-ablated (Grb10(-/-) ) mice exhibit improved whole body glucose homeostasis and an increase in muscle mass associated specifically with an increase in myofiber number. This suggests that Grb10 may act as a negative regulator of myogenesis.

View Article and Find Full Text PDF

Musculoskeletal diseases are highly prevalent with staggering annual health care costs across the globe. The combined wasting of muscle (sarcopenia) and bone (osteoporosis)-both in normal aging and pathologic states-can lead to vastly compounded risk for fracture in patients. Until now, our therapeutic approach to the prevention of such fractures has focused solely on bone, but our increasing understanding of the interconnected biology of muscle and bone has begun to shift our treatment paradigm for musculoskeletal disease.

View Article and Find Full Text PDF

Vitamin D deficiency is linked to a range of muscle disorders including myalgia, muscle weakness, and falls. Humans with severe vitamin D deficiency and mice with transgenic vitamin D receptor (VDR) ablation have muscle fiber atrophy. However, molecular mechanisms by which vitamin D influences muscle function and fiber size remain unclear.

View Article and Find Full Text PDF

Mutations in the TPM2 gene, which encodes β-tropomyosin, are an established cause of several congenital skeletal myopathies and distal arthrogryposis. We have identified a TPM2 mutation, p.K7del, in five unrelated families with nemaline myopathy and a consistent distinctive clinical phenotype.

View Article and Find Full Text PDF

Grb10 is an intracellular adaptor protein that acts as a negative regulator of insulin and insulin-like growth factor 1 (IGF1) receptors. Since global deletion of Grb10 in mice causes hypermuscularity, we have characterized the skeletal muscle physiology underlying this phenotype. Compared to wild-type (WT) controls, adult mice deficient in Grb10 have elevated body mass and muscle mass throughout adulthood, up to 12 mo of age.

View Article and Find Full Text PDF

Rods are the pathological hallmark of nemaline myopathy, but they can also occur as a secondary phenomenon in other disorders, including mitochondrial myopathies such as complex I deficiency. The mechanisms of rod formation are not well understood, particularly when rods occur in diverse disorders with very different structural and metabolic defects. We compared the characteristics of rods associated with abnormalities in structural components of skeletal muscle thin filament (3 mutations in the skeletal actin gene ACTA1) with those of rods induced by the metabolic cell stress of adenosine triphosphate depletion.

View Article and Find Full Text PDF

The mechanism of muscle weakness was investigated in an Australian family with an M9R mutation in TPM3 (alpha-tropomyosin(slow)). Detailed protein analyses of 5 muscle samples from 2 patients showed that nemaline bodies are restricted to atrophied Type 1 (slow) fibers in which the TPM3 gene is expressed. Developmental expression studies showed that alpha-tropomyosin(slow) is not expressed at significant levels until after birth, thereby likely explaining the childhood (rather than congenital) disease onset in TPM3 nemaline myopathy.

View Article and Find Full Text PDF