DNA-protein crosslinks (DPCs) are toxic DNA lesions wherein a protein is covalently attached to DNA. If not rapidly repaired, DPCs create obstacles that disturb DNA replication, transcription and DNA damage repair, ultimately leading to genome instability. The persistence of DPCs is associated with premature ageing, cancer and neurodegeneration.
View Article and Find Full Text PDFTopoisomerases are enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of DNA topoisomerases: type I enzymes, which make single-stranded cuts in DNA, and type II enzymes, which cut and decatenate double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents.
View Article and Find Full Text PDFNicks are the most frequent form of DNA damage and a potential source of mutagenesis in human cells. By deep sequencing, we have identified factors and pathways that promote and limit mutagenic repair at a targeted nick in human cells. Mutations were distributed asymmetrically around the nick site.
View Article and Find Full Text PDFThe nucleoside analog 5-aza-2'-deoxycytidine (5-aza-dC) is used to treat some hematopoietic malignancies. The mechanism of cell killing depends upon DNMT1, but is otherwise not clearly defined. Here we show that PARP1 forms covalent DNA adducts in human lymphoblast or fibroblasts treated with 5-aza-dC.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
Interhomolog recombination (IHR) occurs spontaneously in somatic human cells at frequencies that are low but sufficient to ameliorate some genetic diseases caused by heterozygous mutations or autosomal dominant mutations. Here we demonstrate that DNA nicks or double-strand breaks (DSBs) targeted by CRISPR-Cas9 to both homologs can stimulate IHR and associated copy-neutral loss of heterozygosity (cnLOH) in human cells. The frequency of IHR is 10-fold lower at nicks than at DSBs, but cnLOH is evident in a greater fraction of recombinants.
View Article and Find Full Text PDFTopoisomerases are proven drug targets, but antibiotics that poison bacterial Topoisomerase 1 (Top1) have yet to be discovered. We have developed a rapid and direct assay for quantification of Top1-DNA adducts that is suitable for high throughput assays. Adducts are recovered by "RADAR fractionation", a quick, convenient approach in which cells are lysed in chaotropic salts and detergent and nucleic acids and covalently bound adducts then precipitated with alcohol.
View Article and Find Full Text PDFDNA Repair (Amst)
May 2020
Proteins form adducts with nucleic acids in a variety of contexts, and these adducts may be cytotoxic if not repaired. Here we apply a proteomic approach to identification of proteins adducted to DNA or RNA in normally proliferating cells. This approach combines RADAR fractionation of proteins covalently bound to nucleic acids with quantitative mass spectrometry (MS).
View Article and Find Full Text PDFHeme is an essential cofactor for many enzymes, but free heme is toxic and its levels are tightly regulated. G-quadruplexes bind heme avidly in vitro, raising the possibility that they may sequester heme in vivo. If so, then treatment that displaces heme from quadruplexes is predicted to induce expression of genes involved in iron and heme homeostasis.
View Article and Find Full Text PDFPLoS Genet
February 2019
Activation-induced deaminase (AID) converts C to U and 5-methyl-C to T. These mutagenic activities are critical to immunoglobulin (Ig) gene diversification and epigenetic reprogramming, but they must be tightly controlled to prevent compromising cell fitness. AID acts in the nucleus but localizes predominately to the cytoplasm.
View Article and Find Full Text PDFRECQ5 (RECQL5) is one of several human helicases that dissociates RAD51-DNA filaments. The gene that encodes RECQ5 is frequently amplified in human tumors, but it is not known whether amplification correlates with increased gene expression, or how increased RECQ5 levels affect DNA repair at nicks and double-strand breaks. Here, we address these questions.
View Article and Find Full Text PDFDiscontinuities in only a single strand of the DNA duplex occur frequently, as a result of DNA damage or as intermediates in essential nuclear processes and DNA repair. Nicks are the simplest of these lesions: they carry clean ends bearing 3'-hydroxyl groups that can undergo ligation or prime new DNA synthesis. In contrast, single-strand breaks also interrupt only one DNA strand, but they carry damaged ends that require clean-up before subsequent steps in repair.
View Article and Find Full Text PDFNicks are the most common form of DNA damage, but they have only recently been shown to initiate damage that requires repair. Analysis of the pathways of nick repair in human cells has benefited from the development of enzymes that target nicks to specific sites in the genome and of reporters that enable rapid analysis of homology-directed repair and mutagenic end joining. Nicks undergo efficient repair by single-stranded oligonucleotide donors complementary to either the nicked or intact DNA strand, via pathways that are normally suppressed by RAD51.
View Article and Find Full Text PDFNicks are the most common form of DNA damage. The mechanisms of their repair are fundamental to genomic stability and of practical importance for genome engineering. We define two pathways that support homology-directed repair by single-stranded DNA donors.
View Article and Find Full Text PDFThe Werner syndrome (WS) is a prototypic adult Mendelian progeroid syndrome in which signs of premature aging are associated with genomic instability and an elevated risk of cancer. The WRN RECQ helicase protein binds and unwinds G-quadruplex (G4) DNA substrates in vitro, and we identified significant enrichment in G4 sequence motifs at the transcription start site and 5' ends of first introns (false discovery rate < 0.001) of genes down-regulated in WS patient fibroblasts.
View Article and Find Full Text PDFAID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated.
View Article and Find Full Text PDFRecent research has established clear connections between G-quadruplexes and human disease. Features of quadruplex structures that promote genomic instability have been determined. Quadruplexes have been identified as transcriptional, translational and epigenetic regulatory targets of factors associated with human genetic disease.
View Article and Find Full Text PDFPurpose: Colon cancers deficient in mismatch repair (MMR) may exhibit diminished expression of the DNA repair gene, MRE11, as a consequence of contraction of a T11 mononucleotide tract. This study investigated MRE11 status and its association with prognosis, survival and drug response in patients with stage III colon cancer.
Patients And Methods: Cancer and Leukemia Group B 89803 (Alliance) randomly assigned 1,264 patients with stage III colon cancer to postoperative weekly adjuvant bolus 5-fluorouracil/leucovorin (FU/LV) or irinotecan+FU/LV (IFL), with 8 year follow-up.
Bloom syndrome is a rare autosomal recessive disorder characterized by genetic instability and cancer predisposition, and caused by mutations in the gene encoding the Bloom syndrome, RecQ helicase-like (BLM) protein. To determine whether altered gene expression might be responsible for pathological features of Bloom syndrome, we analyzed mRNA and microRNA (miRNA) expression in fibroblasts from individuals with Bloom syndrome and in BLM-depleted control fibroblasts. We identified mRNA and miRNA expression differences in Bloom syndrome patient and BLM-depleted cells.
View Article and Find Full Text PDFEnzymes that form transient DNA-protein covalent complexes are targets for several potent classes of drugs used to treat infectious disease and cancer, making it important to establish robust and rapid procedures for analysis of these complexes. We report a method for isolation of DNA-protein adducts and their identification and quantification, using techniques compatible with high-throughput screening. This method is based on the RADAR assay for DNA adducts that we previously developed (Kiianitsa and Maizels (2013) A rapid and sensitive assay for DNA-protein covalent complexes in living cells.
View Article and Find Full Text PDFBackground & Aims: The CpG island methylator phenotype (CIMP), defined by a high frequency of aberrantly methylated genes, is a characteristic of a subclass of colon tumors with distinct clinical and molecular features. Cohort studies have produced conflicting results on responses of CIMP-positive tumors to chemotherapy. We assessed the association between tumor CIMP status and survival of patients receiving adjuvant fluorouracil and leucovorin alone or with irinotecan (IFL).
View Article and Find Full Text PDFG4 motifs are greatly enriched near promoters, suggesting that quadruplex structures may be targets of transcriptional regulation. Here we show, by ChIP-Seq analysis of human cells, that 40% of the binding sites of the transcription-associated helicases, XPB and XPD, overlap with G4 motifs. The highly significant overlap of XPB and XPD binding sites with G4 motifs cannot be explained by GC richness or parameters of the genomewide analysis, but instead suggests that these proteins are recruited to quadruplex structures that form in genomic DNA (G4 DNA).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2014
DNA nicks are the most common form of DNA damage, and if unrepaired can give rise to genomic instability. In human cells, nicks are efficiently repaired via the single-strand break repair pathway, but relatively little is known about the fate of nicks not processed by that pathway. Here we show that homology-directed repair (HDR) at nicks occurs via a mechanism distinct from HDR at double-strand breaks (DSBs).
View Article and Find Full Text PDFThe creation of a DNA break at a specific locus by a designer endonuclease can be harnessed to edit a genome. However, DNA breaks may engage one of several competing repair pathways that lead to distinct types of genomic alterations. Therefore, understanding the contribution of different repair pathways following the introduction of a targeted DNA break is essential to further advance the safety and efficiency of nuclease-induced genome modification.
View Article and Find Full Text PDF