Neurodegeneration is a major cause of human disease. Within the cerebellum, neuronal degeneration and/or dysfunction has been associated with many diseases, including several forms of cerebellar ataxia, since normal cerebellar function is paramount for proper motor coordination, balance, and motor learning. The cerebellum represents a well-established neural circuit.
View Article and Find Full Text PDFIn skeletal muscle, L-type calcium channels (DHPRs), localized to plasma membrane sarcoplasmic reticulum junctions, are tightly packed into groups of four termed tetrads. Here, we have used bimolecular fluorescence complementation (BiFC) and targeted biotinylation to probe the structure and organization of β1a subunits associated with native CaV 1.1 in DHPRs of myotubes.
View Article and Find Full Text PDFCalcium ions play an important role in the electrical excitability of nerve and muscle, as well as serving as a critical second messenger for diverse cellular functions. As a result, mutations of genes encoding calcium channels may have subtle affects on channel function yet strongly perturb cellular behavior. This review discusses the effects of calcium channel mutations on channel function, the pathological consequences for cellular physiology, and possible links between altered channel function and disease.
View Article and Find Full Text PDFIn skeletal muscle, the dihydropyridine receptor (DHPR) in the plasma membrane (PM) serves as a Ca(2+) channel and as the voltage sensor for excitation-contraction (EC coupling), triggering Ca(2+) release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) membrane. In addition to being functionally linked, these two proteins are also structurally linked to one another, but the identity of these links remains unknown. As an approach to address this issue, we have expressed DHPR alpha(1S) or beta(1a) subunits, with a biotin acceptor domain fused to targeted sites, in myotubes null for the corresponding, endogenous DHPR subunit.
View Article and Find Full Text PDFExcitation-contraction coupling in skeletal muscle involves conformational coupling between dihydropyridine receptors (DHPRs) in the plasma membrane and ryanodine receptors (RyRs) in the sarcoplasmic reticulum. However, it remains uncertain what regions, if any, of the two proteins interact with one another. Toward this end, it would be valuable to know the spatial interrelationships of DHPRs and RyRs within plasma membrane/sarcoplasmic reticulum junctions.
View Article and Find Full Text PDF