Publications by authors named "Nancy M Endersby"

The butterfly tribe Aeromachini Tutt, 1906 is a large group of skippers. In this study, a total of 10 genera and 45 species of putative members of this tribe, which represent most of the generic diversity and nearly all the species diversity of the group in China, were sequenced for two mitochondrial genes and three nuclear genes (2093 bp). The combined dataset was analyzed with maximum likelihood inference using IQtree.

View Article and Find Full Text PDF

The maternally inherited obligate bacteria Wolbachia is known for infecting the reproductive tissues of a wide range of arthropods and can contribute to phylogenetically discordant patterns between mtDNA and nDNA. In this study, we tested for an association between mito-nuclear discordance in Polytremis and Wolbachia infection. Six of the 17 species of Polytremis were found to be infected with Wolbachia.

View Article and Find Full Text PDF

The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae.

View Article and Find Full Text PDF

A novel strategy for suppressing disease transmission by Aedes aegypti, the main vector of dengue, uses releases of mosquitoes infected with the bacterium Wolbachia pipientis. Wolbachia are currently released to interfere with viral transmission, but there is also potential to use strains in mosquito suppression and elimination programs via the deleterious effects of the bacterium on the host. Mosquito suppression depends on target areas being relatively isolated to prevent reinvasion and on local climatic conditions.

View Article and Find Full Text PDF

Aedes aegypti, Aedes notoscriptus, and Aedes albopictus are important vectors of many arboviruses implicated in human disease such as dengue fever. Genetic markers applied across vector species can provide important information on population structure, gene flow, insecticide resistance, and taxonomy, however, robust microsatellite markers have proven difficult to develop in these species and mosquitoes generally. Here we consider the utility and transferability of 15 Ribosome protein (Rp) Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in these 3 Aedes species.

View Article and Find Full Text PDF

The whitefly Bemisia tabaci (Gennadius) is one of the most important pests causing economic losses in a variety of cropping systems around the world. This species was recently found in a coastal region of Colombia and has now spread inland. To investigate this invasive process, the genetic structure of B.

View Article and Find Full Text PDF

The intracellular endosymbiont Wolbachia has been artificially transinfected into the dengue vector Aedes aegypti, where it is being investigated as a potential dengue biological control agent. Invasion of Wolbachia in natural populations depends upon the fitness of Wolbachia-infected Ae. aegypti relative to uninfected competitors.

View Article and Find Full Text PDF

Background: Recent releases have been carried out with Aedes aegypti mosquitoes infected with the wMelPop mosquito cell-line adapted (wMelPop-CLA) strain of Wolbachia. This infection introduced from Drosophila provides strong blockage of dengue and other arboviruses but also has large fitness costs in laboratory tests. The releases were used to evaluate the fitness of released infected mosquitoes, and (following termination of releases) to test for any effects of wMelPop-CLA on wing size and shape when mosquitoes were reared under field conditions.

View Article and Find Full Text PDF

There is increasing interest in rearing modified mosquitoes for mass release to control vector-borne diseases, particularly Wolbachia-infected Aedes aegypti for suppression of dengue. Successful introductions require release of high quality mosquitoes into natural populations. Potential indicators of quality are body size and shape.

View Article and Find Full Text PDF

Aedes notoscriptus (Skuse), a mosquito from the southwest Pacific region including Australia, has been implicated as a vector of arboviruses, but its status as a species is unclear. To investigate the taxonomic situation, we assessed genetic variation and phylogenetic relationships among Ae. notoscriptus from the east coast of Australia, Western Australia and New Zealand.

View Article and Find Full Text PDF

Background: The genetic population structure of Aedes (Stegomyia) aegypti (L.), the main vector of dengue virus, is being investigated in areas where a novel dengue suppression program is to be implemented. The aim of the program is to release and establish mosquito populations with impaired virus transmission capabilities.

View Article and Find Full Text PDF

We have developed and validated two new fluorescence-based PCR assays to detect the Wolbachia wMel strain in Aedes aegypti and the wRi and wAu strains in Drosophila simulans. The new assays are accurate, informative, and cost-efficient for large-scale Wolbachia screening.

View Article and Find Full Text PDF