Marine heatwaves have been linked to negative ecological effects in recent decades. If marine heatwaves regularly induce community reorganization and biomass collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries and human communities. However, the extent to which marine heatwaves have negative impacts on fish biomass or community composition, or even whether their effects can be distinguished from natural and sampling variability, remains unclear.
View Article and Find Full Text PDFClimate change is commonly associated with many species redistributions and the influence of other factors may be marginalized, especially in the rapidly warming Arctic.The Barents Sea, a high latitude large marine ecosystem in the Northeast Atlantic has experienced above-average temperatures since the mid-2000s with divergent bottom temperature trends at subregional scales.Concurrently, the Barents Sea stock of Atlantic cod one of the most important commercial fish stocks in the world, increased following a large reduction in fishing pressure and expanded north of 80°N.
View Article and Find Full Text PDFDetermining the importance of physical and biological drivers in shaping biodiversity in diverse ecosystems remains a global challenge. Advancements have been made towards this end in large marine ecosystems with several studies suggesting environmental forcing as the primary driver. However, both empirical and theoretical studies point to additional drivers of changes in diversity involving trophic interactions and, in particular, predation.
View Article and Find Full Text PDFIn the early 1990s, the Northwest Atlantic Ocean underwent a fisheries-driven ecosystem shift. Today, the iconic cod () remains at low levels, while Atlantic halibut () has been increasing since the mid-2000s, concomitant with increasing interest from the fishing industry. Currently, our knowledge about halibut ecology is limited, and the lack of recovery in other collapsed groundfish populations has highlighted the danger of overfishing local concentrations.
View Article and Find Full Text PDFWe have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St.
View Article and Find Full Text PDF1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored.
View Article and Find Full Text PDFThe frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced.
View Article and Find Full Text PDFGlobal scale forecasts of range shifts in response to global warming have provided vital insight into predicted species redistribution. We build on that insight by examining whether local warming will affect habitat on spatiotemporal scales relevant to regional agencies. We used generalized additive models to quantify the realized habitat of 46 temperate/boreal marine species using 41+ years of survey data from 35°N-48°N in the Northwest Atlantic.
View Article and Find Full Text PDFThe spatial scale of similarity among fish communities is characteristically large in temperate marine systems: connectivity is enhanced by high rates of dispersal during the larval/juvenile stages and the increased mobility of large-bodied fish. A larger spatial scale of similarity (low beta diversity) is advantageous in heavily exploited systems because locally depleted populations are more likely to be "rescued" by neighboring areas. We explored whether the spatial scale of similarity changed from 1970 to 2006 due to overfishing of dominant, large-bodied groundfish across a 300 000-km2 region of the Northwest Atlantic.
View Article and Find Full Text PDFGlobally, overfishing large-bodied groundfish populations has resulted in substantial increases in their prey populations. Where it has been examined, the effects of overfishing have cascaded down the food chain. In an intensively fished area on the western Scotian Shelf, Northwest Atlantic, the biomass of prey species increased exponentially (doubling time of 11 years) even though the aggregate biomass of their predators remained stable over 38 years.
View Article and Find Full Text PDFPoleward declines in species diversity [latitudinal diversity gradients (LDG)] remain among the oldest and most widespread of macroecological patterns. However, their contemporary dynamics remain largely unexplored even though changing ecological conditions, including global change, may modify LDG and their respective ecosystems. Here, we examine temporal variation within a temperate Northwest Atlantic LDG using 31 years of annual fisheries-independent surveys and explore its dynamics in relation to a dominant climate signal [the wintertime North Atlantic Oscillation (NAO)] that varies interannually and alters the latitudinal gradient of Northwest Atlantic continental shelf bottom water temperatures.
View Article and Find Full Text PDFTraditionally, marine ecosystem structure was thought to be determined by phytoplankton dynamics. However, an integrated view on the relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in large-scale, exploited marine ecosystems is emerging. Long time series of scientific survey data, underpinning the management of commercially exploited species such as cod, are being used to diagnose mechanisms that could affect the composition and relative abundance of species in marine food webs.
View Article and Find Full Text PDFThe dependence of long-term fishery yields on primary productivity, largely based on cross-system comparisons and without reference to the potential dynamic character of this relationship, has long been considered strong evidence for bottom-up control in marine systems. We examined time series of intensive empirical observations from nine heavily exploited regions in the western North Atlantic and find evidence of spatial variance of trophic control. Top-down control dominated in northern areas, the dynamics evolved from bottom-up to top-down in an intermediate region, and bottom-up control governed the southern areas.
View Article and Find Full Text PDF