Publications by authors named "Nancy L Greenbaum"

Splicing of precursor messenger RNA is catalyzed by the spliceosome, a dynamic ribonucleoprotein assembly including five small nuclear (sn)RNAs and >100 proteins. RNA components catalyze the two transesterification reactions, but proteins perform critical roles in assembly and rearrangement. The catalytic core comprises a paired complex of U2 and U6 snRNAs for the major form of the spliceosome and U12 and U6 snRNAs for the minor variant (∼0.

View Article and Find Full Text PDF

We describe a method to analyze the affinity and specificity of interactions between proteins and RNA using horizontal PAGE under non-denaturing conditions. The method permits tracking of migration of anionic and cationic biomolecules and complexes toward anode and cathode, respectively, therefore enabling quantification of bound and free biomolecules of different charges and affinity of their intermolecular interactions. The gel is stained with a fluorescent intercalating dye (SYBR®Gold or ethidium bromide) for visualization of nucleic acids followed by Coomassie® Brilliant Blue R-250 for visualizations of proteins; the dissociation constant is determined separately from the intensity of unshifted and shifted bands visualized by each dye.

View Article and Find Full Text PDF

U2 and U6 small nuclear (sn)RNAs are the only snRNAs directly implicated in catalyzing the splicing of pre-mRNA, but assembly and rearrangement steps prior to catalysis require numerous proteins. Previous studies have shown that the protein-free U2-U6 snRNA complex adopts two conformations in equilibrium, characterized by four and three helices surrounding a central junction. The four-helix conformer is strongly favored in the in vitro protein-free state, but the three-helix conformer predominates in spliceosomes.

View Article and Find Full Text PDF

A multifunctional chlorin platform appended with four short polyethylene glycols and a carboxylate-linker allows rapid conjugation to biotargeting motifs such as proteins and oligonucleotides. The stability and photophysical properties of the chlorin enable development of diagnostics, imaging, molecular tracking, and theranostics.

View Article and Find Full Text PDF

Optical ruler methods employing multiple fluorescent labels offer great potential for correlating distances among several sites, but are generally limited to interlabel distances under 10 nm and suffer from complications due to spectral overlap. Here we demonstrate a multicolor surface energy transfer (McSET) technique able to triangulate multiple points on a biopolymer, allowing for analysis of global structure in complex biomolecules. McSET couples the competitive energy transfer pathways of Förster Resonance Energy Transfer (FRET) with gold-nanoparticle mediated Surface Energy Transfer (SET) in order to correlate systematically labeled points on the structure at distances greater than 10 nm and with reduced spectral overlap.

View Article and Find Full Text PDF

We have probed the molecular basis of recognition between human spliceosomal U2 snRNP protein p14 and RNA targets representing the intron branch site region. Interaction of an RNA duplex representing the branch site helix perturbed at least 10 nuclear magnetic resonance cross-peaks of (15)N-labeled p14. However, similar chemical shift changes were observed upon interaction with a duplex without the bulged branch site residue, suggesting that binding of p14 to RNA is nonspecific and does not recognize the branch site.

View Article and Find Full Text PDF

Functional RNA molecules are often very plastic and often undergo changes in base-pairing patterns to achieve alternative secondary and tertiary conformations associated with their roles in multiple events in gene expression. Solution NMR techniques are an excellent tool for the analysis of conformational heterogeneity and dynamic exchange. In this work, we measure the rates associated with spontaneous interconversion between major conformers in folded RNA sequences by use of a (19)F-(19)F EXSY NMR experiment, taking advantage of RNA samples carrying a single 5-(19)F-pyrimidine label.

View Article and Find Full Text PDF

Many noncoding RNA molecules adopt alternative secondary and tertiary conformations that are critical for their roles in gene expression. Although many of these rearrangements are mediated by other biomolecular components, it is important to evaluate the equilibrium relationship of the conformers. To measure the spontaneous interconversion in a bi-stable RNA stem loop sequence into which a single (19)F-uridine label was incorporated, a (19)F-(19)F EXSY experiment was employed.

View Article and Find Full Text PDF

Recognition of the 5' splice site by group II introns involves pairing between an exon binding sequence (EBS) 1 within the ID3 stem-loop of domain 1 and a complementary sequence at the 3' end of exon 1 (IBS1). To identify the molecular basis for splice site definition of a group IIB ai5γ intron, we probed the solution structure of the ID3 stem-loop alone and upon binding of its IBS1 target by solution NMR. The ID3 stem was structured.

View Article and Find Full Text PDF

The complex formed between the U2 and U6 small nuclear (sn)RNA molecules of the eukaryotic spliceosome plays a critical role in the catalysis of precursor mRNA splicing. Here, we have used enzymatic structure probing, (19)F NMR, and analytical ultracentrifugation techniques to characterize the fold of a protein-free biophysically tractable paired construct representing the human U2-U6 snRNA complex. Results from enzymatic probing and (19)F NMR for the complex in the absence of Mg(2+) are consistent with formation of a four-helix junction structure as a predominant conformation.

View Article and Find Full Text PDF

The branch site helix from Saccharomyces cerevisiae with pseudouridine (ψ) incorporated in a phylogenetically conserved position of U2 snRNA features an extrahelical branch site adenosine (A) that forms a base triple interaction with the minor groove edge of a widely conserved purine(U2 strand)-pyrimidine(intron strand) (R(U2)-Y(intron)) base pair two positions upstream. In these studies, NMR spectra of a duplex in which 2-aminopurine (2ap), a fluorescent analog of adenine lacking the proposed hydrogen bond donor, was substituted for the branch site A, indicated that the substitution does not alter the extrahelical position of the branch site residue; thus, it appears that a hydrogen bond between the adenine amino group and the R-Y pair is not obligatory for stabilization of the extrahelical conformation. In contrast, reversal of the orientation of A(U2)-U(intron) to U(U2)-A(intron) resulted in an intrahelical position for the branch site A or 2ap.

View Article and Find Full Text PDF

Lanthanide ions such as Tb(3+) and Eu(3+) have long been used to probe RNA and protein structures due to their luminescence properties and their steric and chemical similarities to biological metal ions such as Mg(2+) and Ca(2+). In this article, we introduce a method that utilizes the enhanced Tb(3+) luminescence upon site-binding to RNA molecules as a FRET donor. Using this method, it is possible to identify specific metal ion-binding locations within a folded RNA molecule.

View Article and Find Full Text PDF

Metal ions play a crucial role in the conformation and splicing activity of Group II introns. Results from 2-aminopurine fluorescence and solution NMR studies suggest that metal ion binding within the branch site region of native D6 of the Group II intron is specific for alkaline earth metal ions and involves inner sphere coordination. Although Mg(2+) and Ca(2+) still bind to a mutant stem loop sequence from which the internal loop had been deleted, ion binding to the mutant RNA results in decreased, rather than increased, exposure of the branch site residue to solvent.

View Article and Find Full Text PDF

Simple lysine conjugates are capable of selective DNA damage at sites approximating a variety of naturally occurring DNA-damage patterns. This process transforms single-strand DNA cleavage into double-strand cleavage with a potential impact on gene and cancer therapy or on the design of DNA constructs that require disassembly at a specific location. This study constitutes an example of DNA damage site recognition by molecules that are two orders of magnitude smaller than DNA-processing enzymes and presents a strategy for site-selective cleavage of single-strand nucleotides, which is based on their annealing with two shorter counterstrands designed to recreate the above duplex damage site.

View Article and Find Full Text PDF

G.U wobble base pairs are the most common and highly conserved non-Watson-Crick base pairs in RNA. Previous surface maps imply uniformly negative electrostatic potential at the major groove of G.

View Article and Find Full Text PDF

U2 and U6 snRNAs pair to form a phylogenetically conserved complex at the catalytic core of the spliceosome. Interactions with divalent metal ions, particularly Mg(II), at specific sites are essential for its folding and catalytic activity. We used a novel Förster resonance energy transfer (FRET) method between site-bound luminescent lanthanide ions and a covalently attached fluorescent dye, combined with supporting stoichiometric and mutational studies, to determine locations of site-bound Tb(III) within the human U2-U6 complex.

View Article and Find Full Text PDF

Group II introns are multidomain ribozymes that catalyze their own removal from pre-mRNA. The nucleophile for the first cleavage step is the 2'OH of a specific adenosine within domain 6 (D6), called the branch site. Mechanistic parallels and limited secondary structural similarity with the eukaryotic spliceosome lead many to speculate that the two systems have a common ancestry.

View Article and Find Full Text PDF

We have performed NMR experiments in supercooled water in order to decrease the temperature-dependent exchange of protons in RNA duplexes. NMR spectra of aqueous samples of RNA in bundles of narrow capillaries that were acquired at temperatures as low as -18 degrees C reveal resonances of exchangeable protons not seen at higher temperatures. In particular, we detected the imino protons of terminal base pairs and the imino proton of a non-base-paired pseudouridine in a duplex representing the eukaryotic pre-mRNA branch site helix.

View Article and Find Full Text PDF

We have investigated electrostatic and surface features of an essential region of the catalytic core of the spliceosome, the eukaryotic precursor messenger (pre-m)RNA splicing apparatus. The nucleophile for the first of two splicing reactions is the 2'-hydroxyl (OH) of the ribose of a specific adenosine within the intron. During assembly of the spliceosome's catalytic core, this adenosine is positioned by pairing with a short region of the U2 small nuclear (sn)RNA to form the pre-mRNA branch site helix.

View Article and Find Full Text PDF

13C, 15N doubly depleted 32-ribonucleotide was synthesized enzymatically by in vitro transcription from nucleoside triphosphates isolated from E. coli grown in a minimal medium containing 12C, 14N-enriched glucose and ammonium sulfate. Following purification and desalting by reversed-phase HPLC, buffer exchange with Microcon YM-3, and ethanol precipitation, electrospray ionization Fourier transform ion cyclotron resonance mass spectra revealed greatly enhanced abundance of monoisotopic ions (by a factor of approximately 100) and a narrower isotopic distribution with higher signal-to-noise ratio.

View Article and Find Full Text PDF

Carcinogenic aryl hydrazines produce C8-arylated purine adducts. The effect of these adducts on DNA conformation and their role in hydrazine carcinogenesis are unknown. Here, we describe a new synthetic route to produce these adducts that is also compatible with the synthesis of the corresponding phosphoramidites needed for oligonucleotide synthesis.

View Article and Find Full Text PDF

Understanding the process by which RNA molecules fold into stable structures includes study of the role of site-bound metal ions. Because the alkaline earth metal ions typically associated with RNA structure [most often Mg(II)] do not provide convenient spectroscopic signals, replacement with metal ions having spectroscopically useful properties has been a valuable approach. The luminescence properties of the lanthanide(III) series, in particular europium(III), have made them useful in the study of complexation with biomolecules.

View Article and Find Full Text PDF

Spin labels have been extensively used to study the dynamics of oligonucleotides. Spin labels that are more rigidly attached to a base in an oligonucleotide experience much larger changes in their range of motion than those that are loosely tethered. Thus, their electron paramagnetic resonance spectra show larger changes in response to differences in the mobility of the oligonucleotides to which they are attached.

View Article and Find Full Text PDF

Pairing of a consensus sequence of the precursor (pre)-mRNA intron with a short region of the U2 small nuclear (sn)RNA during assembly of the eukaryotic spliceosome results in formation of a complementary helix of seven base pairs with a single unpaired adenosine residue. The 2' OH of this adenosine, called the branch site, brings about nucleophilic attack at the pre-mRNA 5' splice site in the first step of splicing. Another feature of this pairing is the phylogenetic conservation of a pseudouridine (psi) residue in U2 snRNA nearly opposite the branch site.

View Article and Find Full Text PDF