ACS Appl Mater Interfaces
July 2020
Single-ion conducting (SIC) polymer electrolytes with a high Li transference number () have shown the capability to enable enhanced battery performance and safety by avoiding liquid-electrolyte leakage and suppressing Li dendrite formation. However, issues of insufficient ionic conductivity, low electrochemical stability, and poor polymer/electrode interfacial contact have greatly hindered their commercial use. Here, a Li-containing boron-centered fluorinated SIC polymer gel electrolyte (LiBFSIE) was rationally designed to achieve a high and high electrochemical stability.
View Article and Find Full Text PDFEffects of the volume expansion and shrinkage of Li2S cathodes on electrochemical cycle life are investigated via post-test analysis without exposure to air. The engineered electrodes that confine volume changes within micro-reactors have significantly longer life than the electrodes without the micro-reactor structure, providing the first unambiguous evidence of the importance of confining volume changes for improved battery performance.
View Article and Find Full Text PDF