Purpose: The manual segmentation of organ structures in radiation oncology treatment planning is a time-consuming and highly skilled task, particularly when treating rare tumors like sacral chordomas. This study evaluates the performance of automated deep learning (DL) models in accurately segmenting the gross tumor volume (GTV) and surrounding muscle structures of sacral chordomas.
Methods And Materials: An expert radiation oncologist contoured 5 muscle structures (gluteus maximus, gluteus medius, gluteus minimus, paraspinal, piriformis) and sacral chordoma GTV on computed tomography images from 48 patients.