Proc Natl Acad Sci U S A
September 2023
Fibrosis is regulated by interactions between immune and mesenchymal cells. However, the capacity of cell types to modulate human fibrosis pathology is poorly understood due to lack of a fully humanized model system. MISTRG6 mice were engineered by homologous mouse/human gene replacement to develop an immune system like humans when engrafted with human hematopoietic stem cells (HSCs).
View Article and Find Full Text PDFCheckpoint inhibitors (CPIs) targeting programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) have revolutionized cancer treatment but can trigger autoimmune complications, including CPI-induced diabetes mellitus (CPI-DM), which occurs preferentially with PD-1 blockade. We found evidence of pancreatic inflammation in patients with CPI-DM with shrinkage of pancreases, increased pancreatic enzymes, and in a case from a patient who died with CPI-DM, peri-islet lymphocytic infiltration. In the NOD mouse model, anti-PD-L1 but not anti-CTLA-4 induced diabetes rapidly.
View Article and Find Full Text PDFAlloantibodies in presensitized transplant candidates deposit complement membrane attack complexes (MACs) on graft endothelial cells (ECs), increasing risk of CD8+ T cell-mediated acute rejection. We recently showed that human ECs endocytose MACs into Rab5+ endosomes, creating a signaling platform that stabilizes NF-κB-inducing kinase (NIK) protein. Endosomal NIK activates both noncanonical NF-κB signaling to synthesize pro-IL-1β and an NLRP3 inflammasome to process and secrete active IL-1β.
View Article and Find Full Text PDFMultilayered skin substitutes comprising allogeneic cells have been tested for the treatment of nonhealing cutaneous ulcers. However, such nonnative skin grafts fail to permanently engraft because they lack dermal vascular networks important for integration with the host tissue. In this study, we describe the fabrication of an implantable multilayered vascularized bioengineered skin graft using 3D bioprinting.
View Article and Find Full Text PDFTissue engineering may address organ shortages currently limiting clinical transplantation. Off-the-shelf engineered vascularized organs will likely use allogeneic endothelial cells (ECs) to construct microvessels required for graft perfusion. Vasculogenic ECs can be differentiated from committed progenitors (human endothelial colony-forming cells or HECFCs) without risk of mutation or teratoma formation associated with reprogrammed stem cells.
View Article and Find Full Text PDFRationale: Complement activation contributes to multiple immune-mediated pathologies. In late allograft failure, donor-specific antibody deposits complement membrane attack complexes (MAC) on graft endothelial cells (ECs), substantially increasing their immunogenicity without causing lysis. Internalized MAC stabilize NIK (NF-κB [nuclear factor kappa-light-chain-enhancer of activated B cells]-inducing kinase) protein on Rab5+MAC+ endosomes, activating noncanonical NF-κB signaling.
View Article and Find Full Text PDFComplement promotes vascular inflammation in transplant organ rejection and connective tissue diseases. Here we identify ZFYVE21 as a complement-induced Rab5 effector that induces non-canonical NF-κB in endothelial cells (EC). In response to membrane attack complexes (MAC), ZFYVE21 is post-translationally stabilized on MAC+Rab5+ endosomes in a Rab5- and PI(3)P-dependent manner.
View Article and Find Full Text PDFManipulation of human T cell functioning by delivery of macromolecules such as DNA, RNA, or protein is limited, unless the human T cells have been stimulated or electropermeabilized. To achieve successful adaptation and survival of a grafted organ, the alloreactive T cells that induce graft rejection must be regulated. Corticosteroids, calcineurin inhibitors, and mTOR inhibitors, which are systemic immunosuppressants, are currently used for transplantation, with significant side effects.
View Article and Find Full Text PDFEarly acute rejection of human allografts is mediated by circulating alloreactive host effector memory T cells (TEM). TEM infiltration typically occurs across graft postcapillary venules and involves sequential interactions with graft-derived endothelial cells (ECs) and pericytes (PCs). While the role of ECs in allograft rejection has been extensively studied, contributions of PCs to this process are largely unknown.
View Article and Find Full Text PDFEx vivo normothermic machine perfusion (NMP) is a new clinical strategy to assess and resuscitate organs likely to be declined for transplantation, thereby increasing the number of viable organs available. Short periods of NMP provide a window of opportunity to deliver therapeutics directly to the organ and, in particular, to the vascular endothelial cells (ECs) that constitute the first point of contact with the recipient's immune system. ECs are the primary targets of both ischemia-reperfusion injury and damage from preformed antidonor antibodies, and reduction of perioperative EC injury could have long-term benefits by reducing the intensity of the host's alloimmune response.
View Article and Find Full Text PDFA classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multistep process that involves sequential cell-cell interactions of circulating leukocytes with IL-1- or TNF-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a proinflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear.
View Article and Find Full Text PDFComplement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB-inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3.
View Article and Find Full Text PDFRecruitment of circulating leukocytes into inflamed tissues depends on adhesion molecules expressed by endothelial cells (ECs). Here we report that rapamycin pretreatment reduced the ability of TNF-treated ECs to capture T cells under conditions of venular flow. This functional change was caused by inhibition of TNF-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and could be mimicked by knockdown of mammalian target of rapamycin (mTOR) or rictor, but not raptor, implicating mTORC2 as the target of rapamycin for this effect.
View Article and Find Full Text PDFBackground: Cardiac allograft vasculopathy is the major cause of late allograft loss after heart transplantation. Cardiac allograft vasculopathy lesions contain alloreactive T cells that secrete interferon-γ, a vasculopathic cytokine, and occur more frequently in patients with donor-specific antibody. Pathological interactions between these immune effectors, representing cellular and humoral immunity, respectively, remain largely unexplored.
View Article and Find Full Text PDFObjectives: Shiga-toxin producing O157:H7 Entero Haemorrhagic E. coli (STEC/EHEC) is one of the most common causes of Haemolytic Uraemic Syndrome (HUS) related to infectious haemorrhagic colitis. Nearly all recommendations on clinical management of EHEC infections refer to this strain.
View Article and Find Full Text PDFThe accessibility of skin makes it an ideal target organ for nucleic acid-based therapeutics; however, effective patient-friendly delivery remains a major obstacle to clinical utility. A variety of limited and inefficient methods of delivering nucleic acids to keratinocytes have been demonstrated; further advances will require well-characterized reagents, rapid noninvasive assays of delivery, and well-developed skin model systems. Using intravital fluorescence and bioluminescence imaging and a standard set of reporter plasmids we demonstrate transfection of cells in mouse and human xenograft skin using intradermal injection and two microneedle array delivery systems.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2012
Objective: Perioperative nonimmune injuries to an allograft can decrease graft survival. We have developed a model for studying this process using human materials.
Methods And Results: Human artery segments were transplanted as infrarenal aortic interposition grafts into an immunodeficient mouse host, allowed to "heal in" for 30 days, and then retransplanted into a second mouse host.
Hum Immunol
October 2009
Immunodeficient mice bearing components of a human immune system present a novel approach for studying human immune responses. We investigated the number, phenotype, developmental kinetics, and function of developing human immune cells following transfer of CD34(+) hematopoietic stem cell (HSC) preparations originating from second trimester human fetal liver (HFL), umbilical cord blood (UCB), or granulocyte colony-stimulating factor-mobilized adult blood (G-CSF-AB) delivered via intrahepatic injection into sublethally irradiated neonatal NOD-scid/gammac(-/-), Balb/c-Rag1(-/-)gammac(-/-), and C.B-17-scid/bg mice.
View Article and Find Full Text PDFMicrovascular endothelial cell (EC) expression of tumor necrosis factor receptor (TNFR) 2 is induced in situ by ischemia/reperfusion injury. To assess effects of molecular oxygen on TNFR2 expression, we subjected cultured human dermal microvascular ECs (HDMECs) to hypoxic conditions (1% O(2)) or to hypoxic conditions followed by return to normoxic conditions. TNFR2 mRNA and protein are expressed under normoxic conditions but are rapidly reduced by hypoxia; they fall even further upon reoxygenation but rebound by 6-9 h.
View Article and Find Full Text PDFBackground: Nearly half of all infiltrating leukocytes in rejecting human allografts are macrophages, yet, in comparison with T cells, much less is known about the contribution of this cell type to rejection. Our laboratory has previously described models of rejection of human skin or artery grafts in immunodeficient mouse hosts mediated by adoptively transferred allogeneic T cells. However, mature human monocyte/macrophages have consistently failed to engraft in these animals.
View Article and Find Full Text PDFInterleukin (IL) 1alpha produced by human endothelial cells (ECs), in response to tumor necrosis factor (TNF) or to co-culture with allogeneic T cells in a TNF-dependent manner, can augment the release of cytokines from alloreactive memory T cells in vitro. In a human-mouse chimeric model of artery allograft rejection, ECs lining the transplanted human arteries express IL-1alpha, and blocking IL-1 reduces the extent of human T cell infiltration into the artery intima and selectively inhibits IL-17 production by infiltrating T cells. In human skin grafts implanted on immunodeficient mice, administration of IL-17 is sufficient to induce mild inflammation.
View Article and Find Full Text PDFBackground: Secondary vasculitis represents a rare extraintestinal manifestation of Crohn's disease (CD). Appropriate and prompt diagnosis is often delayed by uncertainties about the relationship of the vasculitic manifestations and CD.
Objective: To describe our experience with vasculitis in CD and review the literature with respect to different manifestations and pathophysiological aspects of extraintestinal vasculitic manifestations of CD.
Interferon (IFN)-gamma actions on the vessel wall play an important role in the pathogenesis of arteriosclerosis, yet the contribution of different IFN-gamma signaling pathways to the phenotypic modulation of vascular smooth muscle cells (VSMCs) are poorly understood. We investigated the effects of IFN-gamma on VSMCs and arteries through interactions involving signal transducer and activator of transcription (STAT) proteins. In addition to STAT1 activation, IFN-gamma consistently phosphorylated STAT3 in human VSMCs but weakly or not at all in human endothelial cells or mouse VSMCs.
View Article and Find Full Text PDFThe frequency of circulating alloreactive human memory T cells correlates with allograft rejection. Memory T cells may be divided into effector memory (T(EM)) and central memory (T(CM)) cell subsets, but their specific roles in allograft rejection are unknown. We report that CD4+ T(EM) (CD45RO+ CCR7- CD62L-) can be adoptively transferred readily into C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2007
Although antibodies to HLA play a role in the pathogenesis of diseases processes such as rejection of transplanted organs, the precise mechanisms by which antibodies cause tissue injury are not completely understood. We hypothesized that antibodies to host tissues cause inflammation in part by activating endothelial exocytosis of granules that contain prothrombotic mediators such as von Willebrand Factor (VWF) and proinflammatory mediators such as P-selectin. To test this hypothesis, we treated human endothelial cells with murine monoclonal antibody W6/32 to HLA class I and then measured exocytosis by the release of VWF and the externalization of P-selectin.
View Article and Find Full Text PDF