Purpose: Hydration and ionic composition of the subretinal space (SRS) is modulated by the retinal pigment epithelium (RPE). In particular calcium concentration (Ca(2+)) in the SRS varies with light exposure, and although this change is regulated by RPE transport activity, the specific transport proteins involved have yet to be defined. Two members of the transient receptor potential vanilloid family, TRPV5 and TRPV6, are calcium selective ion channels and are known to be expressed in calcium-transporting epithelial tissues.
View Article and Find Full Text PDFPurpose: To determine whether taurine exerts a protective effect on retinal pigment epithelium (RPE) cells exposed to a cytotoxic agent, cytochrome C (cyC), shown previously to induce apoptosis and produce cell death in electrically coupled neighboring cells.
Methods: Monolayer cultures of confluent human RPE (ARPE-19) cells, which express gap-junctional proteins, were incubated in culture medium with or without taurine. After scrape loading cyC into the cells, we assayed these cells for caspase 3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine the spread of apoptosis.
Plasma membrane calcium-ATPases (PMCAs) play a critical role in regulating intracellular calcium concentration. Four genes encode PMCA proteins with alternative splicing of transcripts at three sites (A, B and C) serving to increase isoform diversity. Our previous work shows that all four PMCAs are expressed and have specific locations in human corneal epithelium (hCE).
View Article and Find Full Text PDFMelanin, which is responsible for virtually all visible skin, hair, and eye pigmentation in humans, is synthesized, deposited, and distributed in subcellular organelles termed melanosomes. A comprehensive determination of the protein composition of this organelle has been obstructed by the melanin present. Here, we report a novel method of removing melanin that includes in-solution digestion and immobilized metal affinity chromatography (IMAC).
View Article and Find Full Text PDFPurpose: Plasma membrane Ca2+-ATPases (PMCAs) are integral membrane proteins essential to the control of intracellular Ca2+ ([Ca2+]i) concentration. Four genes encode PMCA proteins termed PMCA1-PMCA4. Little is known about the expression of these isoforms in corneal epithelium (CE).
View Article and Find Full Text PDFPurpose: The retinal pigment epithelium (RPE) is a transporting epithelial monolayer that controls hydration and composition of the subretinal space. P-glycoprotein is an ATP-binding cassette transport protein known to transport a wide range of hydrophobic compounds. The expression of P-glycoprotein in barrier epithelial cells suggests that it could serve a normal protective function, possibly clearing potentially harmful substances from sensitive compartments, like the subretinal space.
View Article and Find Full Text PDF