In the developing brain, the production of neurons from multipotent precursors must be carefully regulated in order to generate the appropriate numbers of various differentiated neuronal types. Inductive signals from extrinsic elements such as growth factors need to be integrated with timely expression of intrinsic elements such as transcription factors that define the competence of the cell. The transcriptional Mediator complex offers a mechanism to coordinate the timing and levels of intrinsic and extrinsic influences by acting as a rapid molecular switch for transcription of poised RNA pol II.
View Article and Find Full Text PDFThe formation of the embryonic brain requires the production, migration, and differentiation of neurons to be timely and coordinated. Coupling to the photoperiod could synchronize the development of neurons in the embryo. Here, we consider the effect of light and melatonin on the differentiation of embryonic neurons in zebrafish.
View Article and Find Full Text PDFMemory processes are modulated by the biological clock, although the mechanisms are unknown. Here, we report that in the diurnal zebrafish both learning and memory formation of an operant conditioning paradigm occur better during the day than during the night. Melatonin treatment during the day mimics the nighttime suppression of memory formation.
View Article and Find Full Text PDF