Objective: To determine if inappropriate tapering/discontinuation of opioids to Alberta patients occurred from mid-2013-2020, as unintended consequences of prescribing guidelines, regulations and policies in response to the North American opioid crisis.
Design: A population-based, repeated cross-sectional time-series study.
Setting: Alberta, Canada.
Background: The inappropriate and/or high prescribing of benzodiazepine and 'Z' drugs (BDZ +) is a major health concern. The purpose of this study was to determine whether physician or pharmacist led interventions or a simple letter or a personalized prescribing report from a medical regulatory authority (MRA) was the most effective intervention for reducing BDZ + prescribing by physicians to patients 65 years of age or older.
Methods: This was a four-armed, one year, blinded, randomized, parallel-group, investigational trial in Alberta, Canada.
Background: Fomite mediated transmission can be an important pathway causing significant disease transmission in number of settings such as schools, daycare centers, and long-term care facilities. The importance of these pathways relative to other transmission pathways such as direct person-person or airborne will depend on the characteristics of the particular pathogen and the venue in which transmission occurs. Here we analyze fomite mediated transmission through a comparative analysis across multiple pathogens and venues.
View Article and Find Full Text PDFBackground: Healthcare-associated infections (HAIs) affect millions of patients every year. Pathogen transmission via fomites and healthcare workers (HCWs) contribute to the persistence of HAIs in hospitals. A critical parameter needed to assess risk of environmental transmission is the pathogen transfer efficiency between fomites and fingers.
View Article and Find Full Text PDFMathematical models have been used to study Ebola disease transmission dynamics and control for the recent epidemics in West Africa. Many of the models used in these studies are based on the model of Legrand et al. (2007), and most failed to accurately project the outbreak's course (Butler, 2014).
View Article and Find Full Text PDFIn this study, a stochastic discrete-time model is developed to study the spread of an infectious disease in an n-patch environment. The model includes an arbitrary distribution of the (random) infectious period T, and the results are used to investigate how the distribution of T may influence the model outcomes. General results are applied to specific distributions including Geometric, Negative Binomial, Poisson and Uniform.
View Article and Find Full Text PDF