Shale gas extraction through hydraulic fracturing and horizontal drilling is increasing in China, particularly in Sichuan Basin. Production of unconventional shale gas with minimal environmental effects requires adequate management of wastewater from flowback and produced water (FP water) that is coextracted with natural gas. Here we present, for the first time, inorganic chemistry and multiple isotope (oxygen, hydrogen, boron, strontium, radium) data for FP water from 13 shale gas wells from the Lower Silurian Longmaxi Formation in the Weiyuan gas field, as well as produced waters from 35 conventional gas wells from underlying (Sinian, Cambrian) and overlying (Permian, Triassic) formations in Sichuan Basin.
View Article and Find Full Text PDFUnconventional oil and gas exploration in the United States has experienced a period of rapid growth, followed by several years of limited production due to falling and low natural gas and oil prices. Throughout this transition, the water use for hydraulic fracturing and wastewater production in major shale gas and oil production regions has increased; from 2011 to 2016, the water use per well increased up to 770%, while flowback and produced water volumes generated within the first year of production increased up to 1440%. The water-use intensity (that is, normalized to the energy production) increased ubiquitously in all U.
View Article and Find Full Text PDFIn Pennsylvania, Appalachian oil and gas wastewaters (OGW) are permitted for release to surface waters after some treatment by centralized waste treatment (CWT) facilities. While this practice was largely discontinued in 2011 for unconventional Marcellus OGW at facilities permitted to release high salinity effluents, it continues for conventional OGW. This study aimed to evaluate the environmental implications of the policy allowing the disposal of conventional OGW.
View Article and Find Full Text PDFEnviron Sci Technol
May 2016
The rapid rise of unconventional oil production during the past decade in the Bakken region of North Dakota raises concerns related to water contamination associated with the accidental release of oil and gas wastewater to the environment. Here, we characterize the major and trace element chemistry and isotopic ratios ((87)Sr/(86)Sr, δ(18)O, δ(2)H) of surface waters (n = 29) in areas impacted by oil and gas wastewater spills in the Bakken region of North Dakota. We establish geochemical and isotopic tracers that can identify Bakken brine spills in the environment.
View Article and Find Full Text PDFThe distribution and enrichment of naturally occurring radioactive materials (NORM) in coal combustion residuals (CCRs) from different coal source basins have not been fully characterized in the United States. Here we provide a systematic analysis of the occurrence of NORM ((232)Th, (228)Ra, (238)U, (226)Ra, and (210)Pb) in coals and associated CCRs from the Illinois, Appalachian, and Powder River Basins. Illinois CCRs had the highest total Ra ((228)Ra + (226)Ra = 297 ± 46 Bq/kg) and the lowest (228)Ra/(226)Ra activity ratio (0.
View Article and Find Full Text PDF