Publications by authors named "Nancy C Forero-Martinez"

Ionic liquids (ILs) whose water solutions are thermoresponsive provide an appealing route to harvest water from the atmosphere at an energy cost that can be accessed by solar heating. IL/water solutions that present a lower critical solution temperature (LCST), i.e.

View Article and Find Full Text PDF

Acrylic polymers, commonly used in paints, can degrade over time by several different chemical and physical mechanisms, depending on structure and exposure conditions. While exposure to UV light and temperature results in irreversible chemical damage, acrylic paint surfaces in museums can also accumulate pollutants, such as volatile organic compounds (VOCs) and moisture, that affect their material properties and stability. In this work, we studied the effects of different degradation mechanisms and agents on properties of acrylic polymers found in artists' acrylic paints for the first time using atomistic molecular dynamics simulations.

View Article and Find Full Text PDF

The field of organic semiconductors is multifaceted and the potentially suitable molecular compounds are very diverse. Representative examples include discotic liquid crystals, dye-sensitized solar cells, conjugated polymers, and graphene-based low-dimensional materials. This huge variety not only represents enormous challenges for synthesis but also for theory, which aims at a comprehensive understanding and structuring of the plethora of possible compounds.

View Article and Find Full Text PDF

The thermodynamics, structures, and applications of thermoresponsive systems, consisting primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface.

View Article and Find Full Text PDF

Most of the artwork and cultural heritage objects are stored in museums under conditions that are difficult to monitor. While advanced technologies aim to control and prevent the degradation of cultural heritage objects in line with preventive conservation measures, there is much to be learned in terms of the physical processes that lead to the degradation of the synthetic polymers that form the basis of acrylic paints largely used in contemporary art. In museums, stored objects are often exposed to temperature and relative humidity fluctuations as well as airborne pollutants such as volatile organic compounds (VOCs).

View Article and Find Full Text PDF

Despite a vast body of the literature devoted to the use of phenylene polymers in the fabrication of graphene nanoribbons, the study of the physical properties of these precursors still poses open questions whose answers will certainly contribute to the design of more efficient/precise synthesis protocols. Particularly, persistence length measurements combined with size exclusion chromatography techniques assign both semiflexible to semirigid structures depending on the molecular weight of the precursor (NaritaNat. Chem.

View Article and Find Full Text PDF

The effect of finite temperature on the optical properties of nanostructures has been a longstanding problem for their theoretical description and its omission presents serious limits on the validity of calculated spectra and radiative lifetimes. Most ab initio calculations have been carried out neglecting temperature effects altogether, although progress has been made recently. In the present work, the temperature dependence of the intrinsic radiative lifetimes of excited electron-hole pairs in Ge and Si nanocrystals due to classical temperature effects is calculated using ab initio molecular dynamics.

View Article and Find Full Text PDF