Publications by authors named "Nancy Butkiewicz"

SAR development of indole-based palm site inhibitors of HCV NS5B polymerase exemplified by initial indole lead 1 (NS5B IC(50)=0.9 μM, replicon EC(50)>100 μM) is described. Structure-based drug design led to the incorporation of novel heterocyclic moieties at the indole C3-position which formed a bidentate interaction with the protein backbone.

View Article and Find Full Text PDF

Starting from a pentapeptide Hepatitis C virus NS3 protease inhibitor, a number of alpha-ketoamide inhibitors based on novel dichlorocyclopropylproline P2 core were synthesized and investigated for their HCV NS3 serine protease activity. The key intermediate 3,4-dichlorocyclopropylproline was obtained through a dichloro carbene insertion to 3,4-dehydroproline. The size of the molecules was reduced significantly through a series of truncations of the initial pentapeptide.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-alpha or polyethylene glycol (PEG)-interferon-alpha alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response.

View Article and Find Full Text PDF

Synthesis and HCV NS3 serine protease inhibitory activity of 4-hydroxyproline derived macrocyclic inhibitors and SAR around this macrocyclic core is described in this communication. X-ray structure of inhibitor 38 bound to the protease is discussed.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the backbone Ala156 residue and the S4 pocket.

View Article and Find Full Text PDF

The NS3 protease of hepatitis C virus (HCV) has emerged as one of the best characterized targets for next-generation HCV therapy. The tetrapeptide 1 and pentapeptide 2 are alpha-ketoamide-type HCV serine protease inhibitors with modest potency. We envisioned that the 1,2,3,4-tetrahydroisoquinoline-3-carboxylamide (Tic) moiety could be cyclized to the P3 capping group.

View Article and Find Full Text PDF

Prolonged hepatitis C infection is the leading cause for cirrhosis of the liver and hepatocellular carcinoma. The etiological agent HCV virus codes a single polyprotein of approximately 3000 amino acids that is processed with the help of a serine protease NS3A to produce structural and non-structural proteins required for viral replication. Inhibition of NS3 protease can potentially be used to develop drugs for treatment of HCV infections.

View Article and Find Full Text PDF

The limited efficacy and considerable side effects of currently available therapies for the treatment of hepatitis C virus (HCV) infection have prompted significant efforts toward the development of safe and effective new therapeutics. The pentapeptide alpha-ketoamides of type 1 were weak HCV inhibitors with a binding constant, Ki, above 5 microM. We envisioned that cyclization of a P2 phenyl side chain to a P3 capping group could enhance binding through an interaction of the resulting macrocycle with the methyl group of Ala156 on the enzyme backbone.

View Article and Find Full Text PDF

The hepatitis C virus proteinase inhibitor 4-methyl-1-(phenylmethyl)-2,6-pyridinedione 1 undergoes a novel autoxidation process, on silica gel, leading to the dimer 2 as the major product, a relatively more potent inhibitor of the enzyme.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) NS3, when bound to NS-4A cofactor, facilitates development of mature virons by catalyzing cleavage of a polyprotein to form functional and structural proteins of HCV. The enzyme has a shallow binding pocket at the catalytic site, making development of inhibitors difficult. We have designed, preorganized, and depeptidized macrocyclic inhibitors from P(4) to P(2)' and optimized binding to 0.

View Article and Find Full Text PDF

Aminothiazole-based inhibitors designed for HCV polymerase display low micromolar potencies in biochemical assays. These compounds show a stringent preference for a cyclohexyl hydrophobe at the 2-amino position. The composition of these compounds suggests that they may be interacting at a recently discovered allosteric site on the polymerase.

View Article and Find Full Text PDF

Synthesis and HCV NS3 serine protease inhibitory activity of some novel 2-oxoimidazolidine-4-carboxylic acid derivatives are reported. Inhibitors derived from this new P2 core exhibited activity in the low microM range. X-ray structure of an inhibitor, 15c bound to the protease is presented.

View Article and Find Full Text PDF

The 70% aq methanolic extract of the Peruvian plant Stylogne cauliflora was found to contain two novel oligophenolic compounds SCH 644343 (1) and SCH 644342 (2), which were identified as inhibitors of HCV NS3 protease. The structure of 1 and 2 was established based on high-resolution NMR studies. Compound 1 inhibited HCV NS3 protease with an IC(50) of 0.

View Article and Find Full Text PDF