Publications by authors named "Nancy B Valentine"

Biological materials generally require stabilization to retain activity or viability in a dry form. A number of industrial products, such as vaccines, probiotics and biopesticides have been produced as dry preparations. The same methods and materials used for stabilizing commercial microbial products may be applicable to preserving biothreat pathogens in a dry form.

View Article and Find Full Text PDF

Human norovirus (hNoV) infectivity was studied using a three-dimensional model of large intestinal epithelium. Large intestine Caco-2 cells were grown in rotating wall vessel bioreactors for 18-21 days at 37 degrees C and then transferred to 24-well tissue culture plates where they were infected with GI.1 and GII.

View Article and Find Full Text PDF

The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure.

View Article and Find Full Text PDF

As a preservation solution, (1%) ammonium chloride may be preferred over other conventionally used storage solutions because of its compatibility with analytical techniques such as Mass Spectrometry. In this study, ammonium chloride performed as well or better than phosphate buffered saline with Tween or Butterfields/Tween for preserving Francisella tularensis subsp. novicida.

View Article and Find Full Text PDF

Presented here is an analytical method to detect residual agar from a bacterial spore sample as an indication of culturing on an agar plate. This method is based on the resolubilization of agar polysaccharide from a bacterial spore sample, enzymatic digestion, followed by electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis for detection of a specific agar fragment ion. A range of Bacillus species and strains were selected to demonstrate the effectiveness of this approach.

View Article and Find Full Text PDF

Previous work using infrared spectroscopy has shown potential for rapid discrimination between bacteria in either their sporulated or vegetative states, as well as between bacteria and other common interferents. For species within one physiological state, however, distinction is far more challenging, and requires chemometrics. In the current study, we have narrowed the field of study by eliminating the confounding issues of vegetative cells as well as growth media and focused on using IR spectra to distinguish only between different species all in the sporulated state.

View Article and Find Full Text PDF

Our previous paper showed that certain infrared (IR) peaks, e.g., the peak at 1739 cm(-1), are due to varying (trace) amounts of vegetative cells amongst the Bacillus spores and that these and other vegetative bands are associated with lipid-soluble compounds, likely an ester or phospholipid.

View Article and Find Full Text PDF

This paper highlights the distinctions between the infrared (IR) absorption spectra of vegetative versus sporulated Bacillus bacteria. It is observed that there are unique signatures clearly associated with either the sporulated or vegetative state and that vegetative cells (or cell debris) can contribute to the spore spectra. A distinct feature at approximately 1739 cm(-1) appears to be unique to vegetative cell spectra and can also be used as an indicator of vegetative cells or cell debris in the spore spectra.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for characterization and analysis of microorganisms, specifically bacteria, is described here as a rapid screening tool. The objective of this technique is not comprehensive protein analysis of a microorganism but rather a rapid screening of the organism and the accessible protein pattern for characterization and distinction. This method is based on the ionization of the readily accessible and easily ionizable portion of the protein profile of an organism that is often characteristic of different bacterial species.

View Article and Find Full Text PDF

Amelogenin is the predominant matrix protein in developing dental enamel. Making extensive use of residue specific 15N-labeled amino acids samples, the majority of the main and side chain resonances for murine amelogenin were assigned in 2% aqueous acetic acid at pH 3.0.

View Article and Find Full Text PDF

In the aftermath of the 2001 anthrax letters, researchers have been exploring ways to predict the production environment of unknown-source microorganisms. Culture medium, presence of agar, culturing temperature, and drying method are just some of the broad spectrum of characteristics an investigator might like to infer. The effects of many of these factors on microorganisms are not well understood, but the complex way in which microbes interact with their environments suggests that numerous analytical techniques measuring different properties will eventually be needed for complete characterization.

View Article and Find Full Text PDF

A novel, affinity-augmented, bacterial spore-imprinted, bead material was synthesized, based on a procedure developed for vegetative bacteria. The imprinted beads were intended as a front-end spore capture/concentration stage of an integrated biological detection system. Our approach involved embedding bead surfaces with Bacillus thuringiensis kurstaki (Bt) spores (as a surrogate for Bacillus anthracis) during synthesis.

View Article and Find Full Text PDF

We demonstrate the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) in a forensics application to distinguish Bacillus subtilis spores grown in various media based on the elemental signatures of the spores. Triplicate cultures grown in each of four different media were analyzed to obtain TOF-SIMS signatures comprised of 16 elemental intensities. Analysis of variance was unable to distinguish growth medium types based on 40Ca-normalized signatures of any single normalized element.

View Article and Find Full Text PDF

Bacterial analysis by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry has been demonstrated in numerous laboratories, and a few attempts have been made to compare results from different laboratories on the same organism. It has been difficult to understand the causes behind the observed differences between laboratories when different instruments, matrices, solvents, etc. are used.

View Article and Find Full Text PDF

A combined mid-infrared spectroscopic/statistical modeling approach for the discrimination and identification, at the strain level, of both sporulated and vegetative bacterial samples is presented. Transmission mode spectra of bacteria dried on ZnSe windows were collected using a Fourier transform mid-infrared (FT-IR) spectrometer. Five Bacillus bacterial strains (B.

View Article and Find Full Text PDF

Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) has been applied for the first time to the identification and speciation of bacterial spores. A total of forty specimens representing five strains of Bacillus spores (Bacillus subtilis ATCC 49760, Bacillus atrophaeus ATCC 49337, Bacillus subtilis 6051, Bacillus thuringiensis subsp. kurstaki, and Bacillus globigii Dugway) were analyzed.

View Article and Find Full Text PDF

The purpose of this study is to develop a novel bacterial analysis method by coupling the flow field-flow fractionation (flow FFF) separation technique with detection by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The composition of carrier liquid used for flow FFF was selected based on retention of bacterial cells and compatibility with the MALDI process. The coupling of flow FFF and MALDI-TOF MS was demonstrated for P.

View Article and Find Full Text PDF

Many different laboratories are currently developing mass-spectrometric techniques to analyze and identify microorganisms. However, minimal work has been done with mixtures of bacteria. To demonstrate that microbial mixtures could be analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), mixed bacterial cultures were analyzed in a double-blind fashion.

View Article and Find Full Text PDF

In this study various methods of sample preparation and matrices were investigated to determine optimum collection and analysis criteria for fungal analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The fungal samples were applied to the MALDI sample target as untreated, sonicated, or acid/heat treated samples, or blotted directly from the fungal culture with double-stick tape.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9ou63odlolcq3umbu0u8hj9ikb0nrh2b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once