Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (PDH, E1), leaving other post-translational modifications (PTMs) largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma (HCC), disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression.
View Article and Find Full Text PDFMetabolic reprogramming is an important feature of cancers that has been closely linked to post-translational protein modification (PTM). Lysine succinylation is a recently identified PTM involved in regulating protein functions, whereas its regulatory mechanism and possible roles in tumor progression remain unclear. Here, we show that OXCT1, an enzyme catalyzing ketone body oxidation, functions as a lysine succinyltransferase to contribute to tumor progression.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
August 2023
Tumor metabolic reprogramming and epigenetic modification work together to promote tumorigenesis and development. Protein lysine acetylation, which affects a variety of biological functions of proteins, plays an important role under physiological and pathological conditions. Here, through immunoprecipitation and mass spectrum data, we show that phosphoglycerate mutase 5 (PGAM5) deacetylation enhances malic enzyme 1 (ME1) metabolic enzyme activity to promote lipid synthesis and proliferation of liver cancer cells.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2020
To promote the targeted cancer therapy, the pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate was successfully constructed. Herein, water-soluble vitamin B6 with pKa (5.6) was chemically conjugated to lipid-soluble vitamin E succinate (α-TOS), which showed selective cancer cell killing ability and this amphiphilic small molecule vitamin conjugate could self-assemble to be free nanoparticles (NPs) and doxorubicin-loaded NPs (α-TOS-B6-NPs-DOX).
View Article and Find Full Text PDF