Fat atrophy and adipose tissue inflammation can cause the pathogenesis of metabolic symptoms in chronic kidney disease (CKD). During CKD, the serum levels of advanced oxidation protein products (AOPPs) are elevated. However, the relationship between fat atrophy/adipose tissue inflammation and AOPPs has remained unknown.
View Article and Find Full Text PDFActivation of mTORC1 (mechanistic target of rapamycin complex 1) in renal tissue has been reported in chronic kidney disease (CKD)-induced renal fibrosis. However, the molecular mechanisms responsible for activating mTORC1 in CKD pathology are not well understood. The purpose of this study was to identify the uremic toxin involved in mTORC1-induced renal fibrosis.
View Article and Find Full Text PDFBackground: Sarcopenia with chronic kidney disease (CKD) progression is associated with life prognosis. Oxidative stress has attracted interest as a trigger for causing CKD-related muscular atrophy. Advanced oxidation protein products (AOPPs), a uraemic toxin, are known to increase oxidative stress.
View Article and Find Full Text PDFAdipose tissue inflammation appears to be a risk factor for the progression of chronic kidney disease (CKD), but the effect of CKD on adipose tissue inflammation is poorly understood. The purpose of this study was to clarify the involvement of uremic toxins (indoxyl sulfate (IS), 3-indoleacetic acid, p-cresyl sulfate and kynurenic acid) on CKD-induced adipose tissue inflammation. IS induces monocyte chemoattractant protein-1 (MCP-1) expression and reactive oxygen species (ROS) production in the differentiated 3T3L-1 adipocyte.
View Article and Find Full Text PDF