Publications by authors named "Nanae Minami"

Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that is covalently conjugated to many substrate proteins in order to modulate their functions; this conjugation is called ISGylation. Several groups reported that the ISGylation of hepatitis C virus (HCV) NS5A protein affects HCV replication. However, the ISG15 conjugation sites on NS5A are not well determined, and it is unclear whether the role of NS5A ISGylation in HCV replication is proviral or antiviral.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is closely associated with type 2 diabetes. We reported that HCV infection induces the lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) via interaction with HCV nonstructural protein 5A (NS5A) protein, thereby suppressing GLUT2 gene expression. The molecular mechanisms of selective degradation of HNF-1α caused by NS5A are largely unknown.

View Article and Find Full Text PDF

Interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein, is induced by type I INF. Although several groups have reported ISGylation of the HCV NS5A protein, it is still unclear whether ISGylation of NS5A has anti- or pro-viral effects in hepatitis C virus (HCV) infection. In the present study, the role of ISGylation-independent, unconjugated ISG15 in HCV infection was examined.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) NS5A protein plays crucial roles in viral RNA replication, virus assembly, and viral pathogenesis. Although NS5A has no known enzymatic activity, it modulates various cellular pathways through interaction with cellular proteins. HCV NS5A (and other HCV proteins) are reportedly degraded through the ubiquitin-proteasome pathway; however, the physiological roles of ubiquitylation and deubiquitylation in HCV infection are largely unknown.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection often causes extrahepatic manifestations, such as type 2 diabetes. We previously reported that HCV infection induces the lysosomal degradation of the transcription factor HNF-1α via an interaction with viral NS5A, thereby suppressing GLUT2 gene expression. However, the molecular mechanism of NS5A-induced degradation of HNF-1α is largely unknown.

View Article and Find Full Text PDF