Background: Terminal lymphatic fluid is the compartment furthest removed from the oxygen supply, and therefore should present the lowest pO(2) in the tissue due to oxygen consumption by the tissue and the lymphatic vessel wall.
Methods And Results: The distribution of pO(2) was determined in the tissue, the lymphatic microvessels, and arterioles and venules of the hamster chamber window model, which is studied without anesthesia with the tissue isolated from the environment. Lymphatic fluid pO(2) was measured with the phosphorescence oxygen quenching method.
Objective: To determine how top loads with different doses of carbon monoxide (CO)-saturated saline solutions (CO-saline) affect microvascular and systemic hemodynamics and to delineate the corresponding biochemical mechanisms.
Design: Prospective study.
Setting: University research laboratory.
Objective: To determine whether resuscitation with polyethylene glycol conjugated bovine serum albumin (2.5% weight/volume) infused at 16 mL/kg/hr (PEG-BSA-16) or at 24 mL/kg/hr (PEG-BSA-24) for 1 hr improves microcirculatory conditions in endotoxemia compared with dextran 70 (6% weight/volume) infused at 24 mL/kg/hr (Dex).
Design: Prospective study.
Purpose Of Review: The development of the phosphorescence quenching oxygen measurement technique has allowed for a simultaneous measurement of intra and perivascular partial pressure oxygen along arteriolar vessels in vivo. Mapping the microvascular distribution and oxygen gradients across the vascular walls using this high-resolution technique reveals the existence of large radial gradients between the vasculature and the tissue, with concomitant longitudinal oxygen loss. Mass balance analysis along vessel segments indicates that the vascular wall has a high rate of oxygen consumption.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2005
The microvascular distribution of oxygen was studied in the arterioles and venules of the awake hamster window chamber preparation to determine the contribution of vascular smooth muscle relaxation to oxygen consumption of the microvascular wall during verapamil-induced vasodilatation. Verapamil HCl delivered in a 0.1 mg/kg bolus injection followed by a continuous infusion of 0.
View Article and Find Full Text PDFLongitudinal and radial oxygen gradients in the microcirculation due to oxygen release from arterioles show that in some tissues oxygen is primarily supplied by arterioles and secondarily by capillaries. In several tissues, the arteriolar rate of oxygen exit is too large to be explained by diffusion alone, indicating that in these tissues oxygen consumption of the arteriolar wall in vivo is much greater than that shown in in vitro studies of endothelium and vascular smooth muscle, a phenomenon that may be related to the synthesis autocoids by the endothelium in vivo. The functional significance of the high metabolic rate of the arteriolar vessels may be related to the need of providing a metabolic barrier for protecting the parenchymal tissue from high oxygen levels in arterial blood, thus reducing formation of oxygen free radicals in the perivascular tissue, a supposition supported by the finding that the radial oxygen gradient at the microvascular wall and therefore its rate of oxygen consumption are proportional to local blood oxygen partial pressure (pO(2)).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2004
Oxygen phosphorescence quenching was used to measure tissue Po(2) of lymphatic vessels of 43.6 +/- 23.1 microm (mean +/- SD) diameter in tissue locations of the rat mesentery classified according to anatomic location.
View Article and Find Full Text PDF