Publications by authors named "Nana Takasu"

Article Synopsis
  • Many female mammals, including rodents, have cyclical reproductive behaviors that are influenced by reproductive hormones and circadian rhythms.
  • Disruption in these circadian rhythms can negatively affect estrous cycles, leading to fewer pregnancies in mice.
  • Extending the length of daylight by just 2 hours can normalize estrous cycles in mice, suggesting that increasing light exposure may enhance reproductive success.
View Article and Find Full Text PDF

The circadian rhythms of physiology and behavior are based on molecular systems at the cellular level, which are regulated by clock genes, including cryptochrome genes, Cry1 and Cry2. In mammals, the circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus maintains the circadian rhythms throughout the body. Cry1 and Cry2 play distinct roles in regulating the circadian rhythm.

View Article and Find Full Text PDF

Salivary secretion displays day-night variations that are controlled by the circadian clock. The central clock in the suprachiasmatic nucleus (SCN) regulates daily physiological rhythms by prompting peripheral oscillators to adjust to changing environments. Aquaporin 5 (Aqp5) is known to play a key role in salivary secretion, but the association between Aqp5 and the circadian rhythm is poorly understood.

View Article and Find Full Text PDF

Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging.

View Article and Find Full Text PDF

The circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus is responsible for controlling behavioral activity rhythms, such as a free running rhythm in constant darkness. Rodents have several circadian oscillators in other brain regions including the arcuate nucleus (ARC). In specific conditions such as food anticipatory activity rhythms in the context of timed restricted feeding, an alternative circadian pace-making system has been assumed by means of circadian oscillators like the SCN.

View Article and Find Full Text PDF

Effects of daily physical exercise in the morning or in the evening were examined on circadian rhythms in plasma melatonin and core body temperature of healthy young males who stayed in an experimental facility for 7 days under dim light conditions (<10 lux). Sleep polysomnogram (PSG) and heart rate variability (HRV) were also measured. Subjects performed 2-h intermittent physical exercise with a bicycle ergometer at ZT3 or at ZT10 for four consecutive days, where zeitgeber time 0 (ZT0) was the time of wake-up.

View Article and Find Full Text PDF

Female reproductive function changes during aging with the estrous cycle becoming more irregular during the transition to menopause. We found that intermittent shifts of the light-dark cycle disrupted regularity of estrous cycles in middle-aged female mice, whose estrous cycles were regular under unperturbed 24-hr light-dark cycles. Although female mice deficient in Cry1 or Cry2, the core components of the molecular circadian clock, exhibited regular estrous cycles during youth, they showed accelerated senescence characterized by irregular and unstable estrous cycles and resultant infertility in middle age.

View Article and Find Full Text PDF

The master pacemaker in the suprachiasmatic nucleus (SCN) controls daily rhythms of behavior in mammals. C57BL/6J mice lacking Period1 (Per1⁻/⁻) are an anomaly because their SCN molecular rhythm is weak or absent in vitro even though their locomotor activity rhythm is robust. To resolve the contradiction between the in vitro and in vivo circadian phenotypes of Per1⁻/⁻ mice, we measured the multi-unit activity (MUA) rhythm of the SCN neuronal population in freely-behaving mice.

View Article and Find Full Text PDF

In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator.

View Article and Find Full Text PDF

Previous neuroimaging studies that examined cerebral blood flow during rapid eye movement (REM) sleep have reported inconsistent findings regarding the activity of the dorsolateral prefrontal cortex (DLPFC). Although most previous positron emission tomography (PET) studies failed to detect DLPFC activation during REM sleep, several studies have observed DLPFC activation, possibly reflecting transient prefrontal activities related to REM. More recently, an event-related functional magnetic resonance imaging (fMRI) study observed REM-locked activation of the DLPFC during REM sleep.

View Article and Find Full Text PDF

Effects of two different light intensities during daytime were examined on human circadian rhythms in plasma melatonin, core body temperature, and wrist activity under a fixed sleep schedule. Sleep qualities as indicated by polysomnography and subjective sleepiness were also measured. In the first week, under dim light conditions ( approximately 10 lx), the onset and peak of nocturnal melatonin rise were significantly delayed, whereas the end of melatonin rise was not changed.

View Article and Find Full Text PDF

The suprachiasmatic nuclei (SCNs) of the hypothalamus contain a circadian clock that exerts profound control over rhythmic physiology and behavior. The clock consists of multiple autonomous cellular pacemakers distributed throughout the rat SCN. In response to a shift in the light schedule, the SCN rapidly changes phase to achieve the appropriate phase relationship with the shifted light schedule.

View Article and Find Full Text PDF

Gonadal steroids are essential for the long-term maintenance of the full repertoire of sexual behavior in male rodents. Typically, all individuals of several species cease to display the ejaculatory reflex within a few weeks of castration. The present study documents the persistence of the ejaculatory reflex 19 weeks after orchidectomy in 40% of male Siberian hamsters maintained in long or short day lengths; testosterone was undetectable in the circulation of these animals.

View Article and Find Full Text PDF

Circadian rhythms of core temperature and activity were studied using three Japanese macaques under influences of two different light intensities during the daytime. Nocturnal core temperature and activity onset time were lower and advanced, respectively, in bright as compared to dim light. These results suggest the possibility that diurnal bright light could influence the circadian organization.

View Article and Find Full Text PDF