Publications by authors named "Nan Wan"

Alzheimer's disease (AD) presents a significant challenge in healthcare, highlighting the necessity for early and precise diagnostic tools. Our model, DAMNet, processes multi-dimensional AD data effectively, utilizing only 7.4 million parameters to achieve diagnostic accuracies of 98.

View Article and Find Full Text PDF

The rapid population growth in urban areas has led to an increased frequency of lost and unclaimed items in public spaces such as public transportation, restaurants, and other venues. Services like Find My iPhone efficiently track lost electronic devices, but many valuable items remain unmonitored, resulting in delays in reclaiming lost and found items. This research presents a method to streamline the search process by comparing images of lost and recovered items provided by owners with photos taken when items are registered as lost and found.

View Article and Find Full Text PDF

The level of triglyceride (TG) in blood is essential to human health, and hypertriglyceridemia (TG level > 150 mg/dL) would lead to cardiovascular disease and acute pancreatitis that threaten human life. Routine methods for measuring the TG level in blood depend on a lipid panel blood test, which is invasive and not convenient. Here, we use photoacoustic (PA) microscopy to test the PA amplitude of blood solutions (based on hemoglobin powder as well as flowing sheep blood) with different TG concentrations.

View Article and Find Full Text PDF

Individual identification and authentication techniques are merged into many aspects of human life with various applications, including access control, payment or banking transfer, and healthcare. Yet conventional identification and authentication methods such as passwords, biometrics, tokens, and smart cards suffer from inconvenience and/or insecurity. Here, inspired by quick response (QR) code and implantable microdevices, implantable and minimally-invasive QR code subcutaneous microchips (QRC-SMs) are proposed to be an effective approach to carry useful and private information, thus enabling individual identification and authentication.

View Article and Find Full Text PDF

Cysticercosis, caused by Taenia solium infection, is a leading cause of acquired epilepsy in many developing countries. Several types of immunoassays have been developed for the detection of Taenia solium infection in both infected humans and livestock animals. However, these methods require central laboratory facilities and are both time- and labor-consuming with longer than desired turnaround time.

View Article and Find Full Text PDF

A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.

View Article and Find Full Text PDF

The pandemic outbreak of the 2019 coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still spreading rapidly and poses a great threat to human health. As such, developing rapid and accurate immunodiagnostic methods for the identification of infected persons is needed. Here, we proposed a simple but sensitive on-site testing method based on spike protein-conjugated quantum dot (QD) nanotag-integrated lateral flow immunoassay (LFA) to simultaneously detect SARS-CoV-2-specific IgM and IgG in human serum.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has now spread all over the world. The National Health Commission of the People's Republic of China reported 78 439 cured and discharged cases, 4634 deaths, 83 462 confirmed cases and 760 818 close contacts as of 25 June 2020. Joint detection of nucleic acids and antibodies has become an important laboratory diagnostic for COVID-19 patients.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has spread to various regions worldwide. As of 27 April 2020, according to real-time statistics released by the World Health Organization, there have been 84 341 confirmed cases and 4643 deaths in China, with more than 2 979 484 confirmed cases and 206 450 deaths outside China. The detection of antibodies produced during the immune response to severe acute respiratory syndrome coronavirus 2 infections has become an important laboratory method for the diagnosis of COVID-19.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) can be used for early diagnosis of myocardial infarction. However, due to a lack of standardized operating procedures, their value for clinical application is low.

Methods: Detection of plasma miRNAs was optimized by analyzing factors influencing miRNA variance and myocardial infarction risk scores during analysis (extraction, reverse transcription, and real-time PCR) and pre-analysis (dietary status, anticoagulants, storage conditions, and hemolysis).

View Article and Find Full Text PDF

To date, the clinical course of idiopathic membranous nephropathy (iMN) remains unclear and lacks direct and effective diagnostic methods. To better understand the host gene expression changes involved in the iMN process and identify the potential signatures for clinical diagnosis, we performed a whole genome-wide transcriptome profile of peripheral blood cells (PBC) from patients with iMN and healthy controls (HCs). A total of 188 differentially expressed genes (DEGs) were detected in patients with iMN versus HCs.

View Article and Find Full Text PDF

Rapid and reliable detection of pathogenic bacteria is vital to prevent and control bacterial diseases. In this study, we present a magnetically assisted surface-enhanced Raman scattering (SERS) biosensor based on the dual-recognition of bacterial cell by aptamer and antibiotic molecules. Aptamer-FeO@Au magnetic nanoparticles (AuMNPs) were synthesized as magnetic and SERS activated substrate for specific bacteria enrichment, vancomycin-SERS tags (Au@MBA) were prepared for the sensitive quantification of pathogenic bacteria.

View Article and Find Full Text PDF

Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements.

View Article and Find Full Text PDF

The coexistence of immunoglobulin A nephropathy (IgAN) and idiopathic membranous nephropathy (IMN) in a few cases suggested that there could be existed a similar mechanism in pathogenesis of these two types of primary glomerulonephritis. In order to verify this hypothesis, a total of 23 reported IgAN-associated SNPs were genotyped in a cohort of 485 IMN patients and 569 healthy controls with Chinese Han origin. After Cochran-Armitage test for trend analysis, seven IgAN-associated SNPs located in the major histocompatibility complex (MHC) region were found to be significantly associated with the susceptibility of IMN, with rs9275596 as the top one (p = 1.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that regulate the expression of target genes. Previous studies have suggested that miRNAs are key regulators in cardiovascular systems. This study investigated the role of miR-873 in H9C2 cardiomyocytes by targeting glioma-associated oncogene 1 (GLI1).

View Article and Find Full Text PDF

The light scattering characteristic plays a very important role in optic imaging and diagnostic applications. For optical detection of the cell, cell scattering characteristics have an extremely vital role. In this paper, we use the finite-difference time-domain (FDTD) algorithm to simulate the propagation and scattering of light in biological cells.

View Article and Find Full Text PDF

Unlabelled: Aminopeptidase N (APN) is selectively expressed on many tumors and the endothelium of tumor neovasculature, and may serve as a promising target for cancer diagnosis and therapy. Asparagine-glycine-arginine (NGR) peptides have been shown to bind specifically to the APN receptor and have served as vehicles for the delivery of various therapeutic drugs in previous studies. The purpose of this study was to synthesize and evaluate the efficacy of a (68)Ga-labeled NGR peptide as a new molecular probe that binds to APN.

View Article and Find Full Text PDF

The aim of present research is to analyze the detailed changes of dendritic cells (DCs) induced by pidotimod(PTD). These impacts on DCs of both bone marrow derived DCs and established DC2.4 cell line were assessed with use of conventional scanning electron microscopy (SEM), flow cytometry (FCM), transmission electron microscopy (TEM), cytochemistry assay FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Of the four class I phosphoinositide 3-kinase (PI3K) isoforms, PI3Kα has justly received the most attention for its potential in cancer therapy. Herein we report our successful approaches to achieve PI3Kα vs PI3Kβ selectivity for two chemical series. In the thienopyrimidine series of inhibitors, we propose that select ligands achieve selectivity derived from a hydrogen bonding interaction with Arg770 of PI3Kα that is not attained with the corresponding Lys777 of PI3Kβ.

View Article and Find Full Text PDF

The discovery of 2 (GDC-0980), a class I PI3K and mTOR kinase inhibitor for oncology indications, is described. mTOR inhibition was added to the class I PI3K inhibitor 1 (GDC-0941) scaffold primarily through the substitution of the indazole in 1 for a 2-aminopyrimidine. This substitution also increased the microsomal stability and the free fraction of compounds as evidenced through a pairwise comparison of molecules that were otherwise identical.

View Article and Find Full Text PDF

Starting from HTS hit 1a, X-ray co-crystallization and molecular modeling were used to design potent and selective inhibitors of PI3-kinase. Bioavailablity in this series was improved through careful modulation of physicochemical properties. Compound 12 displayed in vivo knockdown of PI3K pharmacodynamic markers such as pAKT, pPRAS40, and pS6RP in a PC3 prostate cancer xenograft model.

View Article and Find Full Text PDF

Efforts to identify potent small molecule inhibitors of PI3 kinase and mTOR led to the discovery of the exceptionally potent 6-aryl morpholino thienopyrimidine 6. In an effort to reduce the melting point in analogs of 6, the thienopyrimidine was modified by the addition of a methyl group to disrupt planarity. This modification resulted in a general improvement in in vivo clearance.

View Article and Find Full Text PDF

The PI3K/AKT/mTOR pathway has been shown to play an important role in cancer. Starting with compounds 1 and 2 (GDC-0941) as templates, (thienopyrimidin-2-yl)aminopyrimidines were discovered as potent inhibitors of PI3K or both PI3K and mTOR. Structural information derived from PI3K gamma-ligand cocrystal structures of 1 and 2 were used to design inhibitors that maintained potency for PI3K yet improved metabolic stability and oral bioavailability relative to 1.

View Article and Find Full Text PDF

The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941.

View Article and Find Full Text PDF

Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Nan Wan"

  • - Nan Wan's recent research primarily focuses on innovative diagnostic and identification technologies, combining methods such as photoacoustic imaging, electrokinetic sensing, and implantable microdevices to address practical health and everyday challenges.
  • - Notable findings include the development of a smart lost and found system (LostNet) to streamline item recovery in urban settings, as well as advancements in non-invasive blood triglyceride testing and rapid, sensitive methods for detecting biomarkers linked to diseases including COVID-19 and neurological disorders.
  • - The research also emphasizes enhancing the effectiveness of diagnostic methods for various conditions, underscoring the importance of point-of-care technologies in improving healthcare delivery and outcomes globally.

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6e8qpjfkl5i11294k3nou9thdehml3f4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once