Publications by authors named "Namwoo Yi"

Escherichia coli, as one of the gut microbiota, can evoke severe inflammatory diseases including peritonitis and sepsis. Gram-negative bacteria including E. coli constitutively release nano-sized outer membrane vesicles (OMVs).

View Article and Find Full Text PDF

Highly biocompatible polycaprolactone (PCL)/poly(lactic-co-glycolic acid) (PLGA)/collagen scaffolds in which the PCL/PLGA collagen solution was selectively dispensed into every other space between the struts were fabricated using solid freeform fabrication (SFF) technology, as we described previously. The objective of this study was to evaluate and compare the PCL/PLGA/collagen scaffolds (group 3) with PCL/PLGA-only scaffolds (group 1) and PCL/PLGA scaffolds with collagen by the dip-coating method (group 2) using human adipose-derived stem cells (hASCs) and rat primary hepatocytes. The selectively dispensed collagen formed a three-dimensional (3D) network of nanofibers in group 3, as observed by scanning electron microscopy.

View Article and Find Full Text PDF

This paper presents a thermal analysis device, which can measure thermal conductivity of picoliter scale liquid sample. We employ the three omega method with a microfabricated AC thermal sensor with nanometer width heater. The liquid sample is confined by a micro-well structure fabricated on the sensor surface.

View Article and Find Full Text PDF

We propose a method for probing denaturation of proteins by measuring the thermal conductivity of the solution. We use the three-omega method with a microfabricated ac thermal sensor to measure the thermal conductivity of lysozyme, β-lactoglobulin, and bovine serum albumin protein solutions over a range of temperature and pH. Results suggest that conformation transformation of the protein during denaturation changes the thermal network in protein solutions and thus changes the thermal conductivity for all the tested proteins.

View Article and Find Full Text PDF

We suggest a novel method to detect droplets and determine the protein content of droplets in microfluidic system using the 3ω method, which is a powerful tool to easily detect thermal response changes with a simple device. By measuring the thermal response of droplets and a carrying flow in real time, water droplets in an oleic acid carrying flow can be detected, and the concentration of bovine serum albumin in droplets can be estimated. This method is expected to increase the practicality and power of droplet-based microfluidic systems.

View Article and Find Full Text PDF