The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments.
View Article and Find Full Text PDFDespite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement.
View Article and Find Full Text PDFThe dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated.
View Article and Find Full Text PDFThe manner in which the nervous system regulates animal behaviors in natural environments is a fundamental issue in biology. To address this question, C. elegans has been widely used as a model animal for the analysis of various animal behaviors.
View Article and Find Full Text PDFHere we report a tracking X-ray microscopy (TrXM) as a novel methodology by using upper right lung apices alveoli in live intact mice. By enabling tracking of individual alveolar movements during respiration, TrXM identifies alveolar dynamics: individual alveoli in the upper lung apices show a small size increment as 4.9 ± 0.
View Article and Find Full Text PDFDisrupted cortical cytoarchitecture in cerebellum is a typical pathology in reeler. Particularly interesting are structural problems at the cellular level: dendritic morphology has important functional implication in signal processing. Here we describe a combinatorial imaging method of synchrotron X-ray microtomography with Golgi staining, which can deliver 3-dimensional(3-D) micro-architectures of Purkinje cell(PC) dendrites, and give access to quantitative information in 3-D geometry.
View Article and Find Full Text PDF