Notes documented by clinicians, such as patient histories, hospital courses, lab reports and others are often annotated with standardized clinical codes by medical coders to facilitate a variety of secondary processing applications such as billing and statistical analyses. Clinical coding, traditionally manual and labor-intensive, has seen a surge in research interest by deep learning researchers pursuing to automate it. However, deep learning methods require large volumes of annotated clinical data for training and offer little to explain why codes were assigned to pieces of text.
View Article and Find Full Text PDFNamed Entity Recognition (NER) or the extraction of concepts from clinical text is the task of identifying entities in text and slotting them into categories such as problems, treatments, tests, clinical departments, occurrences (such as admission and discharge) and others. NER forms a critical component of processing and leveraging unstructured data from Electronic Health Records (EHR). While identifying the spans and categories of concepts is itself a challenging task, these entities could also have attributes such as negation that pivot their meanings implied to the consumers of the named entities.
View Article and Find Full Text PDFBackground: Word vectors or word embeddings are n-dimensional representations of words and form the backbone of Natural Language Processing of textual data. This research experiments with algorithms that augment word vectors with lexical constraints that are popular in NLP research and clinical domain constraints derived from the Unified Medical Language System (UMLS). It also compares the performance of the augmented vectors with Bio + Clinical BERT vectors which have been trained and fine-tuned on clinical datasets.
View Article and Find Full Text PDF