Replication fork collision with a DNA nick can generate a one-ended break, fostering genomic instability. The opposing fork's collision with the nick could form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells.
View Article and Find Full Text PDFChromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown.
View Article and Find Full Text PDFKU70 (XRCC6 gene in humans) is one of the proteins in the KU70-KU80 heterodimer which is the first component recruited to broken DNA ends during DNA double-strand break repair through nonhomologous end joining (NHEJ). Previous studies have shown that Ku70 deficient mouse cells are defective in NHEJ and V(D)J recombination. In contrast, heterozygous KU70 mutant human cell lines did not show any significant change in cell viability and sensitivity towards ionizing radiation.
View Article and Find Full Text PDFRecombination activating genes (RAGs), consisting of RAG1 and RAG2, are stringently regulated lymphoid-specific genes, which initiate V(D)J recombination in developing lymphocytes. We report the regulation of RAG1 through a microRNA (miRNA), miR-29c, in a B cell stage-specific manner in mice and humans. Various lines of experimentation, including CRISPR-Cas9 genome editing, demonstrate the target specificity and direct interaction of miR-29c to RAG1.
View Article and Find Full Text PDFMultiple steps of the retroviral infection process have been targeted over the years to develop therapeutic approaches, starting from the entry of the virus into the cell till the viral DNA integration to host genome. Inhibitors against the Human Immunodeficiency Virus (HIV) integrase is the newest among the therapies employed against HIV. Recombination activating gene 1 (RAG1) is an integral protein involved in the generation of diversity of antibodies and T-cell receptors and is one of the partners of the RAG complex.
View Article and Find Full Text PDFAccumulating evidence suggests that human genome can fold into non-B DNA structures, when appropriate sequence and favourable conditions are present. Among these, G-quadruplexes (G4-DNA) are associated with gene regulation, chromosome fragility and telomere maintenance. Although several techniques are used in detecting such structures in vitro, understanding their intracellular existence has been challenging.
View Article and Find Full Text PDFRecombination activating genes (RAGs), consisting of RAG1 and RAG2 have ability to perform spatially and temporally regulated DNA recombination in a sequence specific manner. Besides, RAGs also cleave at non-B DNA structures and are thought to contribute towards genomic rearrangements and cancer. The nonamer binding domain of RAG1 binds to the nonamer sequence of the signal sequence during V(D)J recombination.
View Article and Find Full Text PDFHIV is a retrovirus that infects CD4 T lymphocytes in human beings and causes immunodeficiency. In the recent years, various therapies have been developed against HIV, including targeting the HIV specific protein, integrase, responsible for integration of HIV cDNA into host DNA. Although, integrase is specific to HIV, it has functional and structural similarity with RAG1, one of the partner proteins associated with V(D)J recombination, a process by which immune diversity is generated in humans.
View Article and Find Full Text PDFThis investigation explored a dietary therapy of pectic polysaccharide (CCPS) (2 mg/ Kg BW) against female repro-toxicity and infertility triggered by sodium arsenite (As) (10 mg/ Kg BW) in Wistar rats. The isolated CCPS consists of D-galactose and D-methyl galacturonate with a molar ratio of 1: 4. FTIR spectral analysis of CCPS and CCPS- sodium arsenite (As) complex indicated a possible chelating property of CCPS in presence of binding sites (OH/COOH) for As.
View Article and Find Full Text PDFIntegrase inhibitors are a class of antiretroviral drugs used for the treatment of AIDS that target HIV integrase, an enzyme responsible for integration of viral cDNA into host genome. RAG1, a critical enzyme involved in V(D)J recombination exhibits structural similarity to HIV integrase. We find that two integrase inhibitors, Raltegravir and Elvitegravir, interfered with the physiological functions of RAGs such as binding, cleavage and hairpin formation at the recombination signal sequence (RSS), though the effect of Raltegravir was limited.
View Article and Find Full Text PDF