Health and disease are fundamentally influenced by microbial communities and their genes (the microbiome). An in-depth analysis of microbiome structure that enables the classification of individuals based on their health can be crucial in enhancing diagnostics and treatment strategies to improve the overall well-being of an individual. In this paper, we present a novel semi-supervised methodology known as Randomized Feature Selection based Latent Dirichlet Allocation (RFSLDA) to study the impact of the gut microbiome on a subject's health status.
View Article and Find Full Text PDF