Publications by authors named "Namita Bisaria"

MicroRNAs (miRNAs), in association with Argonaute (AGO) proteins, direct repression by pairing to sites within mRNAs. Compared to pairing preferences of the miRNA seed region (nucleotides 2-8), preferences of the miRNA 3' region are poorly understood, due to the sparsity of measured affinities for the many pairing possibilities. We used RNA bind-n-seq with purified AGO2-miRNA complexes to measure relative affinities of >1000 3'-pairing architectures for each miRNA.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) act within Argonaute proteins to guide repression of messenger RNA targets. Although various approaches have provided insight into target recognition, the sparsity of miRNA-target affinity measurements has limited understanding and prediction of targeting efficacy. Here, we adapted RNA bind-n-seq to enable measurement of relative binding affinities between Argonaute-miRNA complexes and all sequences ≤12 nucleotides in length.

View Article and Find Full Text PDF

Structured RNAs and RNA complexes underlie biological processes ranging from control of gene expression to protein translation. Approximately 50% of nucleotides within known structured RNAs are folded into Watson-Crick (WC) base pairs, and sequence changes that preserve these pairs are typically assumed to preserve higher-order RNA structure and binding of macromolecule partners. Here, we report that indirect effects of the helix sequence on RNA tertiary stability are, in fact, significant but are nevertheless predictable from a simple computational model called RNAMake-∆∆G.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a class of single-stranded RNAs with a contiguous structure that have enhanced stability and a lack of end motifs necessary for interaction with various cellular proteins. Here, we show that unmodified exogenous circRNA is able to bypass cellular RNA sensors and thereby avoid provoking an immune response in RIG-I and Toll-like receptor (TLR) competent cells and in mice. The immunogenicity and protein expression stability of circRNA preparations are found to be dependent on purity, with small amounts of contaminating linear RNA leading to robust cellular immune responses.

View Article and Find Full Text PDF

The past decades have witnessed tremendous developments in our understanding of RNA biology. At the core of these advances have been studies aimed at discerning RNA structure and at understanding the forces that influence the RNA folding process. It is easy to take the present state of understanding for granted, but there is much to be learned by considering the path to our current understanding, which has been tortuous, with the birth and death of models, the adaptation of experimental tools originally developed for characterization of protein structure and catalysis, and the development of novel tools for probing RNA.

View Article and Find Full Text PDF

RNAs fold into defined tertiary structures to function in critical biological processes. While quantitative models can predict RNA secondary structure stability, we are still unable to predict the thermodynamic stability of RNA tertiary structure. Here, we probe conformational preferences of diverse RNA two-way junctions to develop a predictive model for the formation of RNA tertiary structure.

View Article and Find Full Text PDF

Large-scale, cooperative rearrangements underlie the functions of RNA in RNA-protein machines and gene regulation. To understand how such rearrangements are orchestrated, we used high-throughput chemical footprinting to dissect a seemingly concerted rearrangement in P5abc RNA, a paradigm of RNA folding studies. With mutations that systematically disrupt or restore putative structural elements, we found that this transition reflects local folding of structural modules, with modest and incremental cooperativity that results in concerted behavior.

View Article and Find Full Text PDF

Decades of study of the RNA folding problem have revealed that diverse and complex structured RNAs are built from a common set of recurring structural motifs, leading to the perspective that a generalizable model of RNA folding may be developed from understanding of the folding properties of individual structural motifs. We used single-molecule fluorescence to dissect the kinetic and thermodynamic properties of a set of variants of a common tertiary structural motif, the tetraloop/tetraloop-receptor (TL/TLR). Our results revealed a multistep TL/TLR folding pathway in which preorganization of the ubiquitous AA-platform submotif precedes the formation of the docking transition state and tertiary A-minor hydrogen bond interactions form after the docking transition state.

View Article and Find Full Text PDF

Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔG, the probability of aligning tertiary contact partners, and ΔG, the favorable energetic contribution from the formation of tertiary contacts in an aligned state.

View Article and Find Full Text PDF

RNA-guided nucleases (RGNs) provide sequence-specific gene regulation through base-pairing interactions between a small RNA guide and target RNA or DNA. RGN systems, which include CRISPR-Cas9 and RNA interference (RNAi), hold tremendous promise as programmable tools for engineering and therapeutic purposes. However, pervasive targeting of sequences that closely resemble the intended target has remained a major challenge, limiting the reliability and interpretation of RGN activity and the range of possible applications.

View Article and Find Full Text PDF

The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA.

View Article and Find Full Text PDF

Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation.

View Article and Find Full Text PDF

Structured RNAs fold through multiple pathways, but we have little understanding of the molecular features that dictate folding pathways and determine rates along a given pathway. Here, we asked whether folding of a complex RNA can be understood from its structural modules. In a two-piece version of the Tetrahymena group I ribozyme, the separated P5abc subdomain folds to local native secondary and tertiary structure in a linked transition and assembles with the ribozyme core via three tertiary contacts: a kissing loop (P14), a metal core-receptor interaction, and a tetraloop-receptor interaction, the first two of which are expected to depend on native P5abc structure from the local transition.

View Article and Find Full Text PDF

The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that "count" the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere.

View Article and Find Full Text PDF

Structured RNA molecules play roles in central biological processes and understanding the basic forces and features that govern RNA folding kinetics and thermodynamics can help elucidate principles that underlie biological function. Here we investigate one such feature, the specific interaction of monovalent cations with a structured RNA, the P4-P6 domain of the Tetrahymena ribozyme. We employ single molecule FRET (smFRET) approaches as these allow determination of folding equilibrium and rate constants over a wide range of stabilities and thus allow direct comparisons without the need for extrapolation.

View Article and Find Full Text PDF

We determined the effects of mutating the long-range tertiary contacts of the Tetrahymena group I ribozyme on the dynamics of its substrate helix (referred to as P1) and on catalytic activity. Dynamics were assayed by fluorescence anisotropy of the fluorescent base analogue, 6-methyl isoxanthopterin, incorporated into the P1 helix, and fluorescence anisotropy and catalytic activity were measured for wild type and mutant ribozymes over a range of conditions. Remarkably, catalytic activity correlated with P1 anisotropy over 5 orders of magnitude of activity, with a correlation coefficient of 0.

View Article and Find Full Text PDF

Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqc4ct0at9vq9bjmnm3vp1f4q7sg3gek1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once