Background: Validation of navigated total knee arthroplasty (TKA) systems assists clinicians in making treatment decisions. The aim of this study was to independently review a navigation assisted robotic system for use in TKA.
Methods: We evaluated 87 patients (92 knees) undergoing robotic assisted TKA.
Chronic nonbacterial osteomyelitis (CNO) is an autoinflammatory bone disease, and patients with active or recurrent bone inflammation at multiple sites are diagnosed with chronic recurrent multifocal osteomyelitis (CRMO). The Chronic multifocal osteomyelitis (CMO) mouse model develops IL-1β-driven sterile bone lesions reminiscent of severe CRMO. The goal of this study was to evaluate the potential involvement of mast cells in CMO/CRMO.
View Article and Find Full Text PDFBinding of antigen to IgE-high affinity FcεRI complexes on mast cells and basophils results in the release of preformed mediators such as histamine and synthesis of cytokines causing allergic reactions. Src-like adapter protein (SLAP) functions co-operatively with c-Cbl to negatively regulate signaling downstream of the T cell receptor, B cell receptor, and receptor tyrosine kinases (RTK). Here, we investigated the role of SLAP in FcεRI-mediated mast cell signaling, using bone marrow derived mast cells (BMMCs) from SLAP knock out (SLAP KO) mice.
View Article and Find Full Text PDFDiscussion on leukotoxin A as a potential therapeutic target to halt the recruitment of inflammatory leukocytes in allergic asthma.
View Article and Find Full Text PDFAcquired mutations in KIT are driver mutations in systemic mastocytosis (SM). Here, we tested the role of SHP2/PTPN11 phosphatase in oncogenic KIT signaling using an aggressive SM mouse model. Stable knock-down (KD) of SHP2 led to impaired growth, colony formation, and increased rates of apoptosis in P815 cells.
View Article and Find Full Text PDFSHP2 protein-tyrosine phosphatase (encoded by Ptpn11) positively regulates KIT (CD117) signaling in mast cells and is required for mast cell survival and homeostasis in mice. In this study, we uncover a role of SHP2 in promoting chemotaxis of mast cells toward stem cell factor (SCF), the ligand for KIT receptor. Using an inducible SHP2 knockout (KO) bone marrow-derived mast cell (BMMC) model, we observed defects in SCF-induced cell spreading, polarization, and chemotaxis.
View Article and Find Full Text PDFIntracellular mechanism(s) that contribute to promiscuous signaling via oncogenic KIT in systemic mastocytosis and acute myelogenous leukemia are poorly understood. We show that SHP2 phosphatase is essential for oncogenic KIT-induced growth and survival in vitro and myeloproliferative disease (MPD) in vivo. Genetic disruption of SHP2 or treatment of oncogene-bearing cells with a novel SHP2 inhibitor alone or in combination with the PI3K inhibitor corrects MPD by disrupting a protein complex involving p85α, SHP2, and Gab2.
View Article and Find Full Text PDFMast cells require KIT receptor tyrosine kinase signaling for development and survival. Here, we report that SH2 domain-containing phosphatase 2 (SHP2) signaling downstream of KIT is essential for mast cell survival and homeostasis in mice. Using a novel mouse model with shp2 deletion within mature mast cells (MC-shp2 knockout [KO]), we find that SHP2 is required for the homeostasis of connective tissue mast cells.
View Article and Find Full Text PDFIntegrin signaling is central to cell growth and differentiation, and critical for the processes of apoptosis, cell migration and wound repair. Previous research has demonstrated a requirement for SNARE-dependent membrane traffic in integrin trafficking, as well as cell adhesion and migration. The goal of the present research was to ascertain whether SNARE-dependent membrane trafficking is required specifically for integrin-mediated signaling.
View Article and Find Full Text PDFClustering of the high affinity IgE receptor (Fc(epsilon)RI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Initiation of FFc(epsilon)RI signaling involves rapid tyrosine phosphorylation of Fc(epsilon)RI and membrane-localized adaptor proteins that recruit additional SH2 domain-containing proteins that dynamically regulate downstream signaling. SH2 domain-containing phosphatase-2 (SHP2) is a protein-tyrosine phosphatase implicated in Fc(epsilon)RI signaling, but whose function is not well defined.
View Article and Find Full Text PDF