Publications by authors named "Namir Sioufi"

In a search to identify chemical modifications to improve the properties of siRNA, we have investigated the effect of the 2 '-O-methyl-2-thiouridine modification on the biological activity of siRNA. Our results indicate that judicious placement of 2 '-O-methyl-2-thiouridine residues could lead to modified siRNA with activity in mammalian cells.

View Article and Find Full Text PDF

A systematic structure-activity relationship study of 4'-thioribose containing small interfering RNAs (siRNAs) has led to the identification of highly potent and stable antisense constructs. To enable this optimization effort for both in vitro and in vivo applications, we have significantly improved the yields of 4'-thioribonucleosides by using a chirally pure (R)-sulfoxide precursor. siRNA duplexes containing strategically placed regions of 4'-thio-RNA were synthesized and evaluated for RNA interference activity and plasma stability.

View Article and Find Full Text PDF

A systematic study on the effect of 2'-sugar modifications (2'-F (2'-F-2'-deoxy-nucleoside residues), 2'-O-Me (2'-O-methyl-nucleoside residues), and 2'-O-MOE [2'-O-(2-methoxyethyl)]-nucleoside residues) in the antisense and sense strands of short interference RNA (siRNA) was performed in HeLa cells. The study of the antisense strand of siRNAs demonstrated that activity depends on the position of the modifications in the sequence. The siRNAs with modified ribonucleotides at the 5'-end of the antisense strand were less active relative to the 3'-modified ones.

View Article and Find Full Text PDF

We have identified a small interfering RNA (siRNA) motif, consisting entirely of 2'-O-methyl and 2'-fluoro nucleotides, that displays enhanced plasma stability and increased in vitro potency. At one site, this motif showed remarkable >500-fold improvement in potency over the unmodified siRNA. This marks the first report of such a potent fully modified motif, which may represent a useful design for therapeutic oligonucleotides.

View Article and Find Full Text PDF

A novel 2'-modification, 2'-O-[2-(methylthio)ethyl] or 2'-O-MTE, has been incorporated into oligonucleotides and evaluated for properties relevant to antisense activity. The results were compared with the previously characterized 2'-O-[2-(methoxy)ethyl] 2'-O-MOE modification. As expected, the 2'-O-MTE modified oligonucleotides exhibited improved binding to human serum albumin compared to the 2'-O-MOE modified oligonucleotides.

View Article and Find Full Text PDF