Int J Environ Res Public Health
September 2020
Ammonia (NH) is an important precursor for particulate secondary aerosol formation. This study was conducted to evaluate the applicability of a passive sampler (PAS) for estimating the NH emission from chemical fertilizer application (85 kg-N·ha) at field scale and to compare the results with a chamber system for the calculation of NH emission flux at lab scale. The application of chemical fertilizer increased the ambient NH concentration from 7.
View Article and Find Full Text PDFSpent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp.
View Article and Find Full Text PDFA greenhouse experiment was conducted to evaluate the effect of four different amendments, bone mill, bottom ash, furnace slag, and red mud, as immobilizing agents and the plant species Miscanthus sinensis and Pteridium aquilinum in aided phytostabilization of Pb/Zn mine tailings. The effects of amendments and plants on the availability and mobility of heavy metals were evaluated using single extraction, sequential extraction, pore-water analysis, and determination of heavy metal concentrations in plants. The application of Fe-rich amendments significantly reduced the amount of soluble and extractable heavy metals in the tailings (p < 0.
View Article and Find Full Text PDFEnviron Geochem Health
June 2012
The objectives of this study were to elucidate the effects of soil amendments [Ferrous sulfate (Fe(II)), red mud, Fe(II) with calcium carbonate (Fe(II)/L) or red mud (RM/F), zero-valent iron (ZVI), furnace slag, spent mushroom waste and by-product fertilizer] on arsenic (As) stabilization and to establish relationships between soil properties, As fractions and soil enzyme activities in amended As-rich gold mine tailings (Kangwon and Keumkey). Following the application of amendments, a sequential extraction test and evaluation of the soil enzyme activities (dehydrogenase and β-glucosidase) were conducted. Weak and negative relationships were observed between water-soluble As fractions (As(WS)) and oxalate extractable iron, while As(WS) was mainly affected by dissolved organic carbon in alkaline tailings sample (Kangwon) and by soil pH in acidic tailings sample (Keumkey).
View Article and Find Full Text PDFThe effects of iron (Fe) and spent mushroom substrate (SMS) arsenic (As) phytotoxicity towards lettuce in artificial soils were investigated to separate the adverse soil parameters relating to As toxicity using a response surface methodology. SMS induced the root elongation of lettuce in both control and As-treated soils. However, in phytotoxicity test using a median effective concentration (EC(50)) of As, Fe and the interaction between both parameters (Fe*SMS) significantly affected EC(50), which explained 71% and 23% of the response, respectively.
View Article and Find Full Text PDFWe evaluated the effects of five different kinds of amendments on heavy metals stabilization. The five amendments were: zero valent iron, limestone, acid mine drainage treatment sludge, bone mill, and bottom ash. To determine bioavailability of the heavy metals, different chemical extraction procedures were used such as, extraction with (Ca(NO(3))(2), DTPA; toxic characteristic leaching procedure (TCLP), physiologically based extraction test (PBET) that simulates gastric juice, and sequential extraction test.
View Article and Find Full Text PDFWe investigated the arsenate tolerance mechanisms of Oenothera odorata by comparing two populations [i.e., one population from the mine site (MP) and the other population from an uncontaminated site (UP)] via the exposure of hydroponic solution containing arsenate (i.
View Article and Find Full Text PDF