Purpose: Ionizing radiation is a harsh environmental factor that could induce plant senescence. We hypothesized that radiation-related senescence remodels proteome, particularly by triggering the accumulation of prion-like proteins in plant tissues. The object of this study, pea ( L.
View Article and Find Full Text PDFIonizing radiation is a genotoxic anthropogenic stressor. It can cause heritable changes in the plant genome, which can be either adaptive or detrimental. There is still considerable uncertainty about the effects of chronic low-intensity doses since earlier studies reported somewhat contradictory conclusions.
View Article and Find Full Text PDFPurpose: Chronic and acute irradiations have drastic effects on flowering stage that plays an important role in further seed development and can determine seed yield. The expression of the key flowering genes, AP1, CO, GI, FT, FLC, and LFY, sensitive to irradiation repair gene RAD51 and the proliferation gene PCNA2 were studied in the wild-type Arabidopsis thaliana (Columbia ecotype) under chronic and acute irradiations.
Materials And Methods: Chronic irradiation was performed using the radioactive isotope СsCl in two total doses of 3 cGy and 17 cGy, with the dose rate of 10 cGy/s and 6.
This pilot study was carried out to assess the effect of radio-contaminated Chernobyl environment on plant genome integrity 27 years after the accident. For this purpose, nuclei were isolated from root tips of the soybean seedlings harvested from plants grown in the Chernobyl area for seven generations. Neutral, neutral-alkaline, and methylation-sensitive comet assays were performed to evaluate the induction and repair of primary DNA damage and the epigenetic contribution to stress adaptation mechanisms.
View Article and Find Full Text PDFPlants continue to flourish around the site of the Chernobyl Nuclear Power Plant disaster. The ability of plants to transcend the radio-contaminated environment was not anticipated and is not well understood. The aim of this study was to evaluate the proteome of flax (Linum usitatissimum L.
View Article and Find Full Text PDFPlants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations.
View Article and Find Full Text PDFTwo serious nuclear accidents during the past quarter of a century contaminated large agricultural areas with radioactivity. The remediation and possible recovery of radio-contaminated areas for agricultural purposes require comprehensive characterization of plants grown in such places. Here we describe the quantitative proteomics method that we use to analyze proteins isolated from seeds of plants grown in radioactive Chernobyl zone.
View Article and Find Full Text PDFStarting in 2007, we have grown soybean (Glycine max [L.] Merr. variety Soniachna) and flax (Linum usitatissimum, L.
View Article and Find Full Text PDFPlants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area.
View Article and Find Full Text PDFTwo serious nuclear accidents during the last quarter century (Chernobyl, 1986 and Fukushima, 2011) contaminated large agricultural areas with radioactivity. The database "Seeds in Chernobyl" (http://www.chernobylproteomics.
View Article and Find Full Text PDFMolecular characterization of crop plants grown in remediated, formerly radioactive, areas could establish a framework for future agricultural use of these areas. Recently, we have established a quantitative reference map for mature flax seed proteins (Linum usitatissimum L.) harvested from a remediated plot in Chernobyl town.
View Article and Find Full Text PDFIn recent years there has been an increasing tendency toward remediation of contaminated areas for agriculture purposes. The study described herein is part of a comprehensive, long-term characterization of crop plants grown in the area formerly contaminated with radioactivity. As a first step, we have established a quantitative map of proteins isolated from mature flax (Linum usitatissimum L.
View Article and Find Full Text PDFThe accident at the Chernobyl Nuclear Power Plant (CNPP) on April 26, 1986 is the most serious nuclear disaster in human history. Surprisingly, while the area proximal to the CNPP remains substantially contaminated with long-lived radioisotopes including (90)Sr and (137)Cs, the local ecosystem has been able to adapt. To evaluate plant adaptation, seeds of a local flax (Linum usitatissimum) variety Kyivskyi were sown in radio-contaminated and control fields of the Chernobyl region.
View Article and Find Full Text PDFThe explosion in one of the four reactors of the Chernobyl Nuclear Power Plant (CNPP, Chernobyl) caused the worst nuclear environmental disaster ever seen. Currently, 23 years after the accident, the soil in the close vicinity of CNPP is still significantly contaminated with long-living radioisotopes, such as (137)Cs. Despite this contamination, the plants growing in Chernobyl area were able to adapt to the radioactivity, and survive.
View Article and Find Full Text PDF