The various stages of epithelial-mesenchymal transition (EMT) generate phenotypically heterogeneous populations of cells. Here, we detail a dual recombinase lineage tracing system using a transgenic mouse model of metastatic breast cancer to trace and characterize breast cancer cells at different EMT stages. We describe analytical steps to label cancer cells at an early partial or a late full EMT state, followed by tracking their behavior in tumor slice cultures.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a transient, reversible process of cell de-differentiation where cancer cells transit between various stages of an EMT continuum, including epithelial, partial EMT, and mesenchymal cell states. We have employed Tamoxifen-inducible dual recombinase lineage tracing systems combined with live imaging and 5-cell RNA sequencing to track cancer cells undergoing partial or full EMT in the MMTV-PyMT mouse model of metastatic breast cancer. In primary tumors, cancer cells infrequently undergo EMT and mostly transition between epithelial and partial EMT states but rarely reach full EMT.
View Article and Find Full Text PDFDuring malignant progression, epithelial cancer cells dissolve their cell-cell adhesion and gain invasive features. By virtue of its dual function, β-catenin contributes to cadherin-mediated cell-cell adhesion, and it determines the transcriptional output of Wnt signaling: via its N terminus, it recruits the signaling coactivators Bcl9 and Pygopus, and via the C terminus, it interacts with the general transcriptional machinery. This duality confounds the simple loss-of-function analysis of Wnt signaling in cancer progression.
View Article and Find Full Text PDFPygopus 2 (Pygo2) is a coactivator of Wnt/β-catenin signaling that can bind bi- or trimethylated lysine 4 of histone-3 (H3K4me) and participate in chromatin reading and writing. It remains unknown whether the Pygo2-H3K4me association has a functional relevance in breast cancer progression . To investigate the functional relevance of histone-binding activity of Pygo2 in malignant progression of breast cancer, we generated a knock-in mouse model where binding of Pygo2 to H3K4me was rendered ineffective.
View Article and Find Full Text PDFAn epithelial-mesenchymal transition (EMT) represents a basic morphogenetic process of high cell plasticity underlying embryogenesis, wound healing, cancer metastasis and drug resistance. It involves a profound transcriptional and epigenetic reprogramming of cells. A critical role of epigenetic modifiers and their specific chromatin modifications has been demonstrated during EMT.
View Article and Find Full Text PDFCancer cell plasticity facilitates the development of therapy resistance and malignant progression. De-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate that cancer cell plasticity can be exploited therapeutically by forcing the trans-differentiation of EMT-derived breast cancer cells into post-mitotic and functional adipocytes.
View Article and Find Full Text PDFWhile nanoparticles are an increasingly popular choice for labeling and tracking stem cells in biomedical applications such as cell therapy, their intracellular fate and subsequent effect on stem cell differentiation remain elusive. To establish an effective stem cell labeling strategy, the intracellular nanocrystal concentration should be minimized to avoid adverse effects, without compromising the intensity and persistence of the signal necessary for long-term tracking. Here, the use of second-harmonic generating barium titanate nanocrystals is reported, whose achievable brightness allows for high contrast stem cell labeling with at least one order of magnitude lower intracellular nanocrystals than previously reported.
View Article and Find Full Text PDFBasal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear.
View Article and Find Full Text PDFCell Mol Life Sci
October 2014
The prediction of efficacy in long-term treatment of acetylcholinesterase inhibitors (AChEIs) is a major clinical issue, although no consistently strong predictive factors have emerged thus far. The present analyses aimed to identify factors for predicting long-term outcome of galantamine treatment. Analyses were conducted with data from a 24 weeks randomized, double-blind, placebo controlled trial to evaluate the efficacy and the safety of galantamine in the treatment of 303 patients with mild to moderate AD.
View Article and Find Full Text PDFChanges in EphA2 signaling can affect cancer cell-cell communication and motility through effects on actomyosin contractility. However, the underlying cell-surface interactions and molecular mechanisms of how EphA2 mediates these effects have remained unclear. We demonstrate here that EphA2 and membrane-anchored membrane type-1 matrix metalloproteinase (MT1-MMP) were selectively up-regulated and coexpressed in invasive breast carcinoma cells, where, upon physical interaction in same cell-surface complexes, MT1-MMP cleaved EphA2 at its Fibronectin type-III domain 1.
View Article and Find Full Text PDFKaposi sarcoma (KS), an angioproliferative disease associated with Kaposi sarcoma herpesvirus (KSHV) infection, harbors a diversity of cell types ranging from endothelial to mesenchymal cells of unclear origin. We developed a three-dimensional cell model for KSHV infection and used it to demonstrate that KSHV induces transcriptional reprogramming of lymphatic endothelial cells to mesenchymal cells via endothelial-to-mesenchymal transition (EndMT). KSHV-induced EndMT was initiated by the viral proteins vFLIP and vGPCR through Notch pathway activation, leading to gain of membrane-type-1 matrix metalloproteinase (MT1-MMP)-dependent invasive properties and concomitant changes in viral gene expression.
View Article and Find Full Text PDFAberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor/stroma border and tumor invasion front.
View Article and Find Full Text PDFTumor cells use membrane type 1 matrix metalloproteinase (MT1-MMP) for invasion and metastasis. However, the signaling mechanisms that underlie MT1-MMP regulation in cancer have remained unclear. Using a systematic gain-of-function kinome screen for MT1-MMP activity, we have here identified kinases that significantly enhance MT1-MMP activity in tumor cells.
View Article and Find Full Text PDFMembrane type 1 matrix metalloproteinase (MT1-MMP, MMP14) is an efficient extracellular matrix (ECM) degrading enzyme that plays important roles in tissue homeostasis and cell invasion. Like a number of type I membrane proteins, MT1-MMP can be internalized from the cell surface through early and recycling endosomes to late endosomes, and recycled to the plasma membrane. Late endosomes participate in the biogenesis of small (30-100 nm) vesicles, exosomes, which redirect plasma membrane proteins for extracellular secretion.
View Article and Find Full Text PDFA novel method, based on the hemolytic screening of a cDNA phage library, was developed to isolate cDNAs encoding grammistins (antibacterial peptide toxins) of the soapfish Pogonoperca punctata. As a result, cDNAs encoding six grammistins were isolated and elucidated for their nucleotide sequences. In common with the grammistins, the precursor protein is composed of a highly conserved signal peptide, a considerably conserved propeptide that is characterized to contain a pair of basic residues (Lys-Arg) at plural positions including the C-terminus and one copy of a mature peptide.
View Article and Find Full Text PDFSoapfishes contain peptide toxins (grammistins) in the skin secretion. Two grammistins (Gs 1 and Gs 2) and six grammistins (Pp 1, Pp 2a, Pp 2b, Pp 3, Pp 4a and Pp 4b) have already been isolated from Grammistes sexlineatus and Pogonoperca punctata, respectively. In this study, five grammistins (Gs A-E), together with grammistins Gs 1 and Gs 2, were further isolated from G.
View Article and Find Full Text PDF