The mutation of the X-linked protocadherin (PCDH) 19 gene in heterozygous females causes epilepsy. However, because of the erosion of X-chromosome inactivation (XCI) in female human pluripotent stem cells, precise disease modeling often leads to failure. In this study, using a mathematical approach and induced pluripotent stem cells retaining XCI derived from patients with PCDH19 missense mutations, we found that heterotypic conditions, which are composed of wild-type and missense PCDH19, led to significant cell-to-cell proximity and impaired neuronal differentiation, accompanied by the aberrant accumulation of doublecortin, a microtubule-associated protein.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2023
High-resolution imaging analysis using various types of cells is an essential tool for dissecting cell functions. Generally, obtaining such images requires the cells to be cultured on glass substrates; however, it often results in the unstable status of cells. In this study, we report that coating the glass substrate using nanosheet composed of hydrophobic polystyrene, with Matrigel, significantly improves the viability of human pluripotent stem cells (hPSCs).
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) regularly and irreversibly show the erosion of X chromosome inactivation (XCI) by long non-coding RNA (lncRNA) silencing, causing challenges in various applications of female hPSCs. Here, we report reliable methods to reactivate with monoallelic expression in female hPSCs. Surprisingly, we find that the editing of regulatory regions by Cas9-mediated non-homologous end joining is sufficient for the reactivation of by endogenous systems.
View Article and Find Full Text PDFXeroderma pigmentosum (XP) is a rare autosomal recessive hereditary disorder. As patients with XP are deficient in nucleotide excision repair, they show severe photosensitivity symptoms. Although skin protection from ultraviolet (UV) radiation is essential to improve the life expectancy of such patients, the optimal protective effect is not achieved even with sunscreen application, owing to the low usability of the preparations.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereby causing erosion of dosage compensation in female hPSCs. Here, we report that the de novo DNA methyltransferases DNMT3A/3B are necessary for XIST repression in female hPSCs.
View Article and Find Full Text PDFFemale human pluripotent stem cells (hPSCs) regularly show erosion of X chromosome inactivation featured by the loss of the long non-coding (lnc) RNA XIST and the accumulation of lncXACT. Here, we report that a common mechanism for the initiation of erosion depends on XIST loss but not XACT accumulation on inactive X chromosomes. We further demonstrate that XACT deletion does not affect X-linked gene dosage in eroded hPSCs and that aberrant XIST RNA diffusion induced by the CRISPR activation system is independent of the presence of XACT RNA.
View Article and Find Full Text PDFBackground: Alopecia areata (AA) is considered a highly heritable, T-cell-mediated autoimmune disease of the hair follicle. However, no convincing susceptibility gene has yet been pinpointed in the major histocompatibility complex (MHC), a genome region known to be associated with AA as compared to other regions.
Methods: We engineered mice carrying AA risk allele identified by haplotype sequencing for the MHC region using allele-specific genome editing with the CRISPR/Cas9 system.
Epigenetic and transcriptome alterations are essential for lineage specification, represented by imprinted X-chromosome inactivation (iXCI) in female mouse preimplantation embryos. However, how various factors affect transcriptome states and lineage commitment remains unclear. We found that in vitro culture duration strongly influences transcriptional variation compared to iXCI loss.
View Article and Find Full Text PDFThe mechanism of embryonic polarity establishment in mammals has long been controversial. Whereas some claim prepatterning in the egg, we recently presented evidence that mouse embryonic polarity is not established until blastocyst and proposed the mechanical constraint model. Here we apply computer simulation to clarify the minimal cellular properties required for this morphology.
View Article and Find Full Text PDFCytokinesis is a complex process that involves dynamic cortical rearrangement. Our recent time-lapse recordings of the mouse egg unexpectedly revealed a high motility of the second polar body (2pb). Experiments to address its underlying mechanism show that neither mechanical compression by the zona pellucida nor the connection via the mid-body is required for the 2pb movement.
View Article and Find Full Text PDFGlobal demethylation of DNA which marks the onset of development occurs asynchronously in the mouse; paternal DNA is demethylated at the the zygote stage, whereas maternal DNA is demethylated later in development. The biological function of such asymmetry and its underlying mechanisms are currently unknown. To test the hypothesis that the early demethylation of male DNA may be associated with protamine-histone exchange, we ,used round spermatids, whose DNA is still associated with histones, for artificial fertilization (round spermatid injection or ROSI), and compared the level of methylation of metaphase chromosomes in the resulting zygotes with the level of methylation in zygotes obtained after fertilization using mature sperm heads (intracytoplasmic sperm injection or ICSI).
View Article and Find Full Text PDFChromosomal abnormalities such as ploidy mosaicism have constituted a major obstacle to the successful nuclear transfer of adult somatic cell nuclei in lower vertebrates to date. Euploid mosaicism has been reported previously in well-developed amphibian transplants. Here, we investigated ploidy mosaicisms in well-developed transplants of adult somatic cell nuclei in medaka fish (Oryzias latipes).
View Article and Find Full Text PDFReprogramming of adult somatic cell nuclei to pluripotency has been unsuccessful in non-mammalian animals, primarily because of chromosomal aberrations in nuclear transplants, which are considered to be caused by asynchrony between the cell cycles of the recipient egg and donor nucleus. In order to normalize the chromosomal status, we used diploidized eggs by retention of second polar body release, instead of enucleated eggs, as recipients in nuclear transfer of primary culture cells from the caudal fin of adult green fluorescent protein gene (GFP) transgenic medaka fish (Oryzias latipes). We found that 2.
View Article and Find Full Text PDFKnowledge about the mechanism that establishes embryonic polarity is fundamental in understanding mammalian development. In re-addressing several controversial claims, we recently proposed a model in which mouse embryonic polarity is not specified until the blastocyst stage. Before fertilization, the fully differentiated oocyte has been characterized as "polarized," and we indeed observed that the sperm preferentially enters the polar body half.
View Article and Find Full Text PDFPolarity formation in mammalian preimplantation embryos has long been a subject of controversy. Mammalian embryos are highly regulative, which has led to the conclusion that polarity specification does not exist until the blastocyst stage; however, some recent reports have now suggested polarity predetermination in the egg. Our recent time-lapse recordings have demonstrated that the first cleavage plane is not predetermined in the mouse egg.
View Article and Find Full Text PDF