Publications by authors named "Namestnikova D"

In translational animal study aimed at evaluation of the effectiveness of innovative methods for treating cerebral stroke, including regenerative cell technologies, of particular importance is evaluation of the dynamics of changes in the volume of the cerebral infarction in response to therapy. Among the methods for assessing the focus of infarction, MRI is the most effective and convenient tool for use in preclinical studies. This review provides a description of MR pulse sequences used to visualize cerebral ischemia at various stages of its development, and a detailed description of the MR semiotics of cerebral infarction.

View Article and Find Full Text PDF

Background: Cell therapy using neural progenitor cells (NPCs) is a promising approach for ischemic stroke treatment according to the results of multiple preclinical studies in animal stroke models. In the vast majority of conducted animal studies, the therapeutic efficacy of NPCs was estimated after intracerebral transplantation, while the information of the effectiveness of systemic administration is limited. Nowadays, several clinical trials aimed to estimate the safety and efficacy of NPCs transplantation in stroke patients were also conducted.

View Article and Find Full Text PDF

Methods: We performed a hospital-based prospective cohort study with 1,317 enrolled participants. We compared patients and healthy volunteers according to the main demographic, anthropometric parameters, stroke risk factors, comorbidities, and data of clinical and instrumental examination. In order to balance the study and the control groups for age and sex, the propensity score matching was performed.

View Article and Find Full Text PDF

We studied therapeutic efficacy and migration characteristics of mesenchymal stem cells isolated from the human placenta after their intracerebral (stereotactic) administration to rats with the experimental ischemic stroke. It was shown that cell therapy significantly improved animal survival rate and reduced the severity of neurological deficit. New data on the migration pathways of transplanted cells in the brain were obtained.

View Article and Find Full Text PDF
Article Synopsis
  • Systemic transplantation of mesenchymal stem cells (MSCs) shows potential for treating ischemia-related issues like stroke, though the exact benefits are still unclear.
  • * Researchers developed an MRI method to track how MSCs spread in a live rat brain after a stroke, noting their accumulation in brain vessels shortly after being administered.
  • * Despite the low number of MSCs present in the brain and their short retention time, the treatment led to lasting improvements in neurological function without significantly reducing stroke damage compared to control rats.*
View Article and Find Full Text PDF

Ischemic stroke triggers a whole cascade of pathological changes in the brain, one of which is postischemic inflammation. Since in such cases thrombolytic therapy is often not possible, methods that modulate inflammation and affect microglia become particularly interesting. We synthesized 3-(2-oxo-4-phenylpyrrolidin-1-yl)propane-1-sulfonate calcium(II) (Compound ) and studied its anti-inflammatory activity in in vitro and in vivo models of inflammation and ischemia.

View Article and Find Full Text PDF

Intravenous transplantation of mesenchymal stem (stromal) cells (MSC) is a promising approach to the treatment of ischemic stroke. In the published reports of the already completed preclinical and clinical studies the dosages of transplanted MSC greatly vary. However, the optimal dosage has not been determined.

View Article and Find Full Text PDF
Article Synopsis
  • - Researchers explored how well mesenchymal stem cells (MSCs) can be delivered to brain tissue through intra-arterial (IA) transplantation, particularly for treating neurological disorders like stroke.
  • - They studied the relationship between brain blood flow (perfusion) and MSC distribution in both healthy rats and rats with stroke, using advanced MR imaging techniques.
  • - Results showed that brain perfusion partially influences where the MSCs end up after transplantation, but other unknown factors also play a significant role, indicating that more research is needed.
View Article and Find Full Text PDF

Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved.

View Article and Find Full Text PDF

We performed an in silico, in vitro, and in vivo assessment of a potassium 2-[2-(2-oxo-4-phenylpyrrolidin-1-yl) acetamido]ethanesulfonate (compound ) as a potential prodrug for cognitive function improvement in ischemic brain injury. Using in silico methods, we predicted the pharmacological efficacy and possible safety in rat models. In addition, in silico data showed neuroprotective features of compound , which were further supported by in vitro experiments in a glutamate excitotoxicity-induced model in newborn rat cortical neuron cultures.

View Article and Find Full Text PDF

Visualization of transplanted stem cells in the brain is an important issue in the study of the mechanisms of their therapeutic action. MRI allowing visualization of single transplanted cells previously labeled with superparamagnetic iron oxide particles is among the most informative methods of non-invasive intravital imaging. Verification of MRI data using pathomorphological examination at the microscopic level helps to avoid errors in data interpretation.

View Article and Find Full Text PDF

Remyelination is a key process enabling post-stroke brain tissue recovery and plasticity. This study aimed to explore the feasibility of demyelination and remyelination monitoring in experimental stroke from the acute to chronic stage using an emerging myelin imaging biomarker, macromolecular proton fraction (MPF). After stroke induction by transient middle cerebral artery occlusion, rats underwent repeated MRI examinations during 85 days after surgery with histological endpoints for the animal subgroups on the 7th, 21st, 56th, and 85th days.

View Article and Find Full Text PDF

Transplantation of various types of stem cells as a possible therapy for stroke has been tested for years, and the results are promising. Recent investigations have shown that the administration of the conditioned media obtained after stem cell cultivation can also be effective in the therapy of the central nervous system pathology (hypothesis of their paracrine action). The aim of this study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic stroke.

View Article and Find Full Text PDF
Article Synopsis
  • - Cell therapy, particularly using directly reprogrammed neural precursor cells (drNPC), shows promise for reducing brain damage and improving recovery after a stroke, as tested in a rat model.
  • - The study involved infusing drNPC into the bloodstream of rats 24 hours post-stroke, allowing tracking of these cells via MRI; results indicated that drNPC were present near and within the infarct zone more quickly than the control group of placenta-derived mesenchymal stem cells (pMSC).
  • - Both drNPC and pMSC improved neurological function and reduced stroke effects, but they acted differently in terms of infarct volume and animal survival, hinting at unique therapeutic mechanisms at play, particularly for drNPC.
View Article and Find Full Text PDF

Cell therapy of neurological diseases is gaining momentum. Various types of stem/progenitor cells and their derivatives have shown positive therapeutic results in animal models of neurological disorders and in clinical trials. Each tested cell type proved to have its advantages and flaws and unique cellular and molecular mechanism of action, prompting the idea to test combined transplantation of two or more types of cells (combined cell therapy).

View Article and Find Full Text PDF

Human placenta mesenchymal stromal cells were injected to healthy rats either stereotaxically into the striatum or intra-arterially through the internal carotid artery. Some cells injected into the brain migrated along the corpus callosum both medially and laterally or concentrated around small blood vessels. A small fraction of MSC injected intra-arterially adhered to the endothelium and stayed inside blood vessels for up to 48 hours mostly in the basin of the middle cerebral artery.

View Article and Find Full Text PDF

The use of induced pluripotent stem cells (IPSC) is a promising approach to the therapy of CNS diseases. The undeniable advantage of IPSC technology is the possibility of obtaining practically all types of somatic cells for autologous transplantation bypassing bioethical problems. The review presents integrative and non-integrative methods for obtaining IPSC and the ways of their in vitro and in vivo application for the study and treatment of neurological diseases.

View Article and Find Full Text PDF

We compared the effects of placental mesenchymal stromal cells and neural progenitor cells derived from induced human pluripotent cells after their intravenous administration to rats in 24 h after transitory occlusion of the middle cerebral artery. The therapeutic effects were evaluated by the dynamics of animal survival, body weight, neurological deficit, and the volume of infarction focus in 7, 14, 30, and 60 days after surgery. Intravenous injection of neural progenitor cells produced a therapeutic effect on the course of experimental ischemic stroke by increasing animal survival in the most acute period and accelerating compensation of neurological deficit and body weight recovery.

View Article and Find Full Text PDF

The literature review addresses the use of stem cells (SC) in ischemic stroke (IS). Part 1 of the paper overviews the results of experimental animal studies. Characteristics of different SC types and results of their studies in experimental models of IS are presented in the first section, the second section considers pros and cons of the methods of SC injection.

View Article and Find Full Text PDF

The first part of the review summarized the results of preclinical animal studies using stroke models that demonstrated the efficacy of cell therapy. The second part presents the proposed mechanisms of action of stem cells, optimal therapeutic window for cell transplantation, the results of completed clinical trials on humans in the period from 2010 to 2017, as well as the legal aspects of the use of cell technologies in the Russian Federation.

View Article and Find Full Text PDF

The middle cerebral artery occlusion (MCAO) model in rats closely imitates ischemic stroke and is widely used. Existing instrumental methods provide a certain level of MCAO guidance, but monitoring of the MCA-occluding intraluminal filament position and possible complications can be improved. The goal of this study was to develop a MRI-based method of simultaneous control of the filament position, blood flow in the intracranial vessels, and hemorrhagic complications.

View Article and Find Full Text PDF

In vivo tracking of transplanted mesenchymal stem cells (MSCs) migration and homing is vital for understanding the mechanisms of beneficial effects of MSCs transplantation in animal models of diseases and in clinical trials. Transplanted cells can be labeled with superparamagnetic iron oxide (SPIO) particles and visualized in vivo using a number of iron sensitive MRI techniques. However, the applicability of those techniques for SPIO-labeled MSCs tracking in live brain has not been sufficiently investigated.

View Article and Find Full Text PDF