Photoresist polymers containing cycloaliphatic acrylic monomers have been synthesized for use in the microcircuits of semiconductors. Although cycloaliphatic acrylic monomers exhibit a high etch resistance and excellent thermal properties, their large size increases the distance between the main chains of the resulting polymers. This increased distance facilitates the penetration of a developer between the main chains, which leads to swelling and thus pattern collapse, distortion, and delamination, thereby complicating the fabrication of microcircuits.
View Article and Find Full Text PDFPhotopolymerization-based three-dimensional (3D) printing techniques such as stereolithography (SLA) attract considerable attention owing to their superior resolution, low cost, and relatively high printing speed. However, the lack of studies on improving the mechanical properties of 3D materials highlights the importance of delving deeper into additive manufacturing research. These materials possess considerable potential in the medical field, particularly for applications such as anatomical models, medical devices, and implants.
View Article and Find Full Text PDFThis study combines high-throughput screening and virtual molecular docking to identify natural compounds targeting PKC in skin aging. Go 6983, a PKC inhibitor, showed potent suppression of MMP-1 transcription. EGCG was one of the candidates that showed it could significantly lower UVB-induced MMP-1 expression in HaCaT cells, and it had a strong affinity for PKCα.
View Article and Find Full Text PDFThe COVID-19 pandemic is an ongoing global public health threat. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and binding of the SARS-CoV-2 spike to its receptor, angiotensin-converting enzyme 2 (ACE2), on host cells is critical for viral infection. Here, we developed a luminescent biosensor that readily detects interactions of the spike receptor-binding domain (RBD) and ACE2 in cell culture medium ('SpACE-CCM'), which was based on bimolecular complementation of the split nanoluciferase-fused spike RBD and ectodomain of ACE2 and further engineered to be efficiently secreted from cells by adding a heterologous secretory signal peptide (SSP).
View Article and Find Full Text PDFThe main advantages of the three-dimensional (3D) printing process are flexible design, rapid prototyping, multi-component structures, and minimal waste. For stereolithography (SLA) 3D printing, common photocurable polymers, such as bisphenol-A glycidyl methacrylate (Bis-EMA), trimethylolpropane triacrylate (TMPTMA), as well as urethane oligomers, have been widely used. For a successful 3D printing process, these photocurable polymers must satisfy several requirements, including transparency, a low viscosity, good mechanical strength, and low shrinkage post-ultraviolet curing process.
View Article and Find Full Text PDFThe by-products of iron smelting and smithing include slag, flake hammer scale, and spheroidal hammer scale. The analysis of such iron-making by-products reveals critical information regarding the development of iron culture and the process characteristics. Using a metallographic microscope, SEM-EDS, and Raman micro-spectroscopy, we investigated the manufacturing process by examining the microstructure and determining the composition of the flake hammer scale and spheroidal hammer scale excavated from Korean Peninsula sites of iron manufacture during the Proto-Three Kingdoms Period, in the third and fourth centuries CE.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) represent a major component of the tumor microenvironment and interplay with cancer cells by secreting cytokines, growth factors and extracellular matrix proteins. When estrogen receptor-negative breast cancer MDA-MB-231 cells were treated with the CAF-conditioned medium (CAF-CM), Akt and STAT3 involved in cell proliferation and survival were activated through phosphorylation. CAFs secrete fibroblast growth factor 2 (FGF2), thereby stimulating breast cancer cell progression.
View Article and Find Full Text PDFRecently, lead halide perovskite nanocrystals have been considered as potential light-emitting materials because of their narrow full width at half-maximum (FWHM) and high photoluminescence quantum yield (PLQY). In addition, they have various emission spectra because the bandgap can be easily tuned by changing the size of the nanocrystals and their chemical composition. However, these perovskite materials have poor long-term stability due to their sensitivity to moisture.
View Article and Find Full Text PDFSTAT3 plays a prominent role in proliferation and survival of tumor cells. Thus, STAT3 has been considered to be a prime target for development of anti-cancer therapeutics. The electrophilic cyclopentenone prostaglandin,15-deoxy-Δ-prostaglandin J (15d-PGJ) has been well recognized for its capability to modulate intracellular signaling pathways involved in cancer cell growth and progression.
View Article and Find Full Text PDFChemoradiation (CRT) is commonly used as an adjuvant or neoadjuvant treatment for colorectal cancer (CRC) patients. However, resistant cells manage to survive and propagate after CRT, increasing the risk of recurrence. Thus, better understanding the mechanism of resistant cancer cells is required to achieve better clinical outcomes.
View Article and Find Full Text PDFWe synthesized medium-band-gap donor-acceptor (D-A) -type conjugated polymers (PBTZCZ-L and PBTZCZ-H) consisting of a benzotriazole building block as an acceptor and a carbazole unit as a donor. In comparison with the polymers, a small conjugated molecule (BTZCZ-2) was developed, and its structural, thermal, optical, and photovoltaic properties were investigated. The power conversion efficiency (PCE) of the BTZCZ-2-based solar cell devices was less than 0.
View Article and Find Full Text PDFSignal transducer and activator of transcription 3 (STAT3) has been considered as a potential target for development of anticancer therapeutics. Here, we report a novel mechanism by which the cyclopentenone prostaglandin, 15-deoxy-Δ -prostaglandin J (15d-PGJ ) functions as an allosteric inhibitor of STAT3. 15d-PGJ inhibits phosphorylation, dimerization, nuclear translocation, and transcriptional activity of STAT3 in H-Ras-transformed human mammary epithelial cells (MCF10A-Ras) through the Michael addition reaction at cysteine 259 of STAT3.
View Article and Find Full Text PDFPersistent activation of STAT3 and Nrf2 is considered to stimulate the aggressive behavior of basal-like breast cancer (BLBC). However, the precise mechanism underlying sustained overactivation of these transcription factors and their roles in breast cancer progression remain elusive. Analysis of the TCGA multi-omics data showed that high levels of STAT3 and Nrf2 mRNA were correlated with elevated expression of P-STAT3 and Nrf2 target proteins in breast cancer patients.
View Article and Find Full Text PDFSignal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signals that are often constitutively activated in many cancerous or transformed cells and some stromal cells in the tumor microenvironment. Persistent STAT3 activation in malignant cells stimulates proliferation, survival, angiogenesis, invasion, and tumor-promoting inflammation. STAT3 undergoes activation through phosphorylation on tyrosine 705, which facilitates its dimerization.
View Article and Find Full Text PDFThe present study was aimed to investigate the effects of curcumin, a representative chemopreventive phytochemical with pronounced antioxidant and anti-inflammatory properties, on activation of Nrf2 and expression of its target protein heme oxygenase-1 (HO-1) in mouse skin in vivo and in cultured murine epidermal cells. Treatment of mouse epidermal JB6 cells with curcumin resulted in the induction of HO-1 expression, and this was abrogated in cells transiently transfected with Nrf2 siRNA. While curcumin treatment increased protein expression of Nrf2, it did not alter the steady-state level of the Nrf2 mRNA transcript.
View Article and Find Full Text PDFRecently, growing attention has been given to new classes of bioactive lipid mediators derived from ω-3 polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), especially in the context of their role as endogenous signal modulators. One such molecule is 17-oxo-DHA, generated from DHA by the action of COX2 and a dehydrogenase. The redox-sensitive transcription factor, Nrf2 plays a key role in cellular stress responses.
View Article and Find Full Text PDFIn this work, we show an effective ultrasonication-assisted self-assembly method under surfactant solution for a high-rate capable rGO-wrapped LiNiCoMnO (Ni-rich cathode material) composite. Ultrasonication indicates the pulverization of the aggregated bulk material into primary nanoparticles, which is effectively beneficial for synthesizing a homogeneous wrapped composite with rGO. The cathode composite demonstrates a high initial capacity of 196.
View Article and Find Full Text PDFSemiconductor quantum well structures have been critical to the development of modern photonics and solid-state optoelectronics. Quantum level tunable structures have introduced new transformative device applications and afforded a myriad of groundbreaking studies of fundamental quantum phenomena. However, noncolloidal, III-V compound quantum well structures are limited to traditional semiconductor materials fabricated by stringent epitaxial growth processes.
View Article and Find Full Text PDFCorrection for 'Investigation of high contrast and reversible luminescence thermochromism of the quantum confined Cs4PbBr6 perovskite solid' by Jong H. Kim et al., Nanoscale, 2019, DOI: 10.
View Article and Find Full Text PDFThermochromism of organic/inorganic halide perovskites has attracted particular interest due to their potential applications as photoluminescence (PL)-based temperature sensors. However, despite the outstanding PL characteristics, their use as a thermochromic material in practical temperature ranges has been limited because of their poor thermal stability. In this study, we used the quantum confinement effect and exceptional PL quantum efficiency of the Cs4PbBr6 perovskite to demonstrate their high on/off ratio (20) and reversible PL thermochromism in the solid state in practical temperature ranges including room temperature (RT).
View Article and Find Full Text PDFCarbonic anhydrase IX is overexpressed in many solid tumors including hypoxic tumors and is a potential target for cancer therapy and diagnosis. Reported imaging agents targeting CA-IX are successful mostly in clear cell renal carcinoma as SKRC-52 and no candidate was approved yet in clinical trials for imaging of CA-IX. To validate CA-IX as a valid target for imaging of hypoxic tumor, we designed and synthesized novel [F]-PET tracer (1) based on acetazolamide which is one of the well-known CA-IX inhibitors and performed imaging study in CA-IX expressing hypoxic tumor model as 4T1 and HT-29 in vivo models other than SKRC-52.
View Article and Find Full Text PDFBackground: Bestrophin-1 (Best1) is a calcium-activated anion channel (CAAC) that is expressed broadly in mammalian tissues including the brain. We have previously reported that Best1 is expressed in hippocampal astrocytes at the distal peri-synaptic regions, called microdomains, right next to synaptic junctions, and that it disappears from the microdomains in Alzheimer's disease mouse model. Although Best1 appears to be dynamically regulated, the mechanism of its regulation and modulation is poorly understood.
View Article and Find Full Text PDFUnderstanding defect chemistry, particularly ion migration, and its significant effect on the surface's optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk.
View Article and Find Full Text PDF